Jump to content
SAU Community

Recommended Posts

"air that was previously flowing towards the TB does in fact have to turn around and flow the other way in order to decrease the pressure in the tract."

I put it forward, there's no need for the air to reverse and flow the other way. Consider this - throttle shuts, airflow into engine stops as throttle plate has now blocked path. Compressor still spinning and pumping air into piping which is now not flowing. BOV located straight after compressor on intercooler piping lets this air out rather than pressure building and pushing against compressor. So the airflow would be effectively stopped, pressure remains the same, and any incoming air would continue to flow the same way, just be diverted straight out the BOV rather than continuing through towards the engine. Get back on throttle and more boost pressure is already there as it hadn't been depressurised in front of throttle plate.

To be honest i think the difference between putting it just before throttle, or just after compressor, would be sweet F.A, in most cases, but it makes sense to me to put it in front of compressor. For another reason, when no longer being driven by the turbine (under closed throttle) the compressor will slow down alot more trying to drive air through the intercooler rather than allowing it to vent out straight away before passing through the I/C.

Obviously this is based on zero hours of research and development by me :P and I'm sure auto manufacturers might have given it at least a few hours testing.....

Nup. Inlet tract at 20 psi. Throttle slams shut and turbo still piling air in, sure. But if you watched a boost gauge connected to the inlet tract (rather than the plenum) during such an event and you will see the pressure fall a long way below the boost pressure it was running at. That only occurs because the air goes out through the hole. The air has to come from everywhere and will flow from the furthest points towards the hole.

Air has mass and inertia. Making it stop and turn about to flow back the other way is inefficient and does work on the air - which ultimately ends up as either heat, or extra pressure (in the form of pulses running up and down the inlet tract).

Again, I must stress that I'm not maintaining that it is the most important consideration in "designing" such a system. But is apparently considered important enough by people who were paid to do it to do it in a particular way, rather than the apparently easier and cheaper alternative.

Can you put a pic up of your engine bay?

Also a while back when I was intending to go high mount ext gate turbo I planned on using parts I found in the US which were a 2" flex pipe which was designed as a kit for external gate setups. The way it looked was pretty good. One end had a bung which was welded to a piece of pipe from your gate and another bung welded into your exhaust and was at a 45 degree angle(they came in different angles). Then you use the hose which was x cm long and attached one end to your WG and the other to the bung in the exhaust. Good thing about the setup was you could undo it all in a matter of minutes and go straight to a atmo vent setup if you wished. The guy who was selling them stopped and I have never seen anything close to them since. This was about 2 years ago.

Weld the adapter underneath the intercooler pipe next to the intake, weld nipple to side of intake bend. Attach BOV to IC piping, run return to the nipple on intake pipe. Any metal/fab shop could complete the welding for a carton.

  • Like 1

Weld the adapter underneath the intercooler pipe next to the intake, weld nipple to side of intake bend. Attach BOV to IC piping, run return to the nipple on intake pipe. Any metal/fab shop could complete the welding for a carton.

No worries, my pop can weld. So I'll ask him to see if he can sort something out.

Thanks again guys :)

  • Like 1

got to say, I look forward to your posts GTSBoy, you're certainly a learned fellow. Just posted something in the braking section I'd like your thoughts and input on, if you care to do so.

Re above "But if you watched a boost gauge connected to the inlet tract (rather than the plenum) during such an event and you will see the pressure fall a long way below the boost pressure it was running at. That only occurs because the air goes out through the hole."

agreed, this being the point of a BOV to release pressure.

"The air has to come from everywhere and will flow from the furthest points towards the hole." if you looked at a smoke test though, wouldn't you see it start to flow through from the area immediately located from the source of the escape route (BOV)? So if you put it as close to the compressor as possible (with the BOV intended to prevent reversion and damage to the compressor) it would reduce pressure in this area first thus preventing reversion and damage to turbo.

I don't claim to have done the research and testing to make this theory foolproof by any means; as we all know from doing basic modifications from day one of owning a turbo car, OEM specs can be improved upon and you got to wonder how much convenience and budgets play a part in R&D and the mass-marketed final product.

if you looked at a smoke test though, wouldn't you see it start to flow through from the area immediately located from the source of the escape route (BOV)? So if you put it as close to the compressor as possible (with the BOV intended to prevent reversion and damage to the compressor) it would reduce pressure in this area first thus preventing reversion and damage to turbo.

Pressure pulses in air travel at the speed of sound. At normal atmospheric pressure and temperature, that's 300m/s or so. It's a bit different with hotter high pressure air, but it's still bloody fast. The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open. Sure, the first air to escape is the air closest to the BOV, but all the air in the tract starts to move towards the BOV as soon as it's open. Well, except for the air near the TB which has to stop and turn around first, but even that doesn't take very long.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

So why did nissan mount it where they did? They could have put it heaps closer to the inlet pipe that its plumbed back to, and eliminated the metal pipework on the return side. They have gone to the extra trouble of mounting it as close to the throttle for a reason.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

No I'm not. The pressure signal is felt quickly. The result, being the decel followed by accel in the other direction takes a lot longer and actually triggers reverbatory pressure pulses that don't need to be there. If the BOV is located at the end of the pipe towards which the air is already flowing, then the air just keeps going that way and dumps out the BOV with no upset.

But, again, I must stress that apart from it being obvious that some serious engineers think it's a good idea to locate it near the TB, it's not likely to be the be all and end all in the decision you make about where to stick the BOV. If it were me doing some plumbing design for a new engine in a new engine bay or modding up an engine in an existing engine bay, I'd try to keep the BOV near the TB, but if I couldn't I wouldn't get liver cancer from the stress of it.

Hey guys, I'm having trouble finding an adaptor plate for my 'Kompact Plumback'

But I do have the spec sheet (of the BOV) with the exact measurement of the base ect.

Will an exhaust shop be able to make up an adaptor plate for it?

If I hand them this sheet.

image-50.jpg

Edited by ZRBE

An exhaust shop, no.

Any fabricator could make one. Does it need to be alloy or stainless?

The plate can be removed off the bov I am fairly sure, that way you could use a round hose instead.

An exhaust shop, no.

Any fabricator could make one. Does it need to be alloy or stainless?

The plate can be removed off the bov I am fairly sure, that way you could use a round hose instead.

My cooler pipe is stainless. So, I guess the adaptor stainless as well?

But if I can remove the plate from bottom of the BOV and just use a hose to connect it to the cooler pipe. Then I might do that, sounds easier and probably a better seal..

Personally, just removed the SSQ and "cap" it off.

BTW the BOV will be the last thing they look for after they see your turbo... :action-smiley-069:

Well I will be removing the SSQ altogether and capping it.

Then putting in the TurboSmart one in. On that bend closest to intake.

Haha the first time I was pulled over in my 32 the cop knew P Platers could NOT drive turbos (so did I) but looked straight at my turbo.. :P

Edited by ZRBE
  • 2 weeks later...
  • 1 month later...

Well I found a welder.. Ended up using the turbosmart kompact..

I have a really bad feeling I might of set it up incorrectly.... :/

I'll post a pic up in a sec, I know that hose is kinked I have bought a new hose that won't kink.

So that's sorted..

Just wondering with the skinny black hose ontop of the BOV. Does that connect to the back of the throttle body?

I know it's waaaay too long haha I need to cut it shorter.

Appreciate the help guys!! :)

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • It was a great, but typical track day, and some VB was ingested at the night time debrief 🤪
    • And so, to round this out, I couldn't be happier to confirm @MBS206 has decided to buy the car. He drove down from sunny QLD with a trailer last week and it is off to its new home today. I'll let Matt confirm on next steps but I understand broadly that the plan is to leave it pretty much as is, and just get some quality wheel time with a nicely balanced car that is pretty much track ready. There are a few a jobs still to be done first but nothing too major and I think its a very smart buy Dinner last night at the Paragon with a round of VBs (mostly) for Neil
    • Well, 50 pages and the end of a chapter for this car. We took it out for a shakedown at Wakie yesterday, and everything went well. There were a couple of niggles: - Oil cooler fitting leak - tightened, cleaned, stopped leaking - Radiator cap overflow fitting was leaking....Mark called it, the overflow fitting was threaded in and not tight....tightened, tested and held pressure - Small oil leak at the rear of the block, probably the turbo oil feed - too hot to get at it comfortably but probably just needs to be nipped up - leak at the driver's side rear brake line where it meets the hardline. Fitting wasn't loose, so Matt backed it off and back on, no further leaks - there's also a leak somewhere on the top of the fuel tank, maybe that cross over fuel line - that was has been left to fix when its on a hoist Otherwise than those niggles the car went great, turned great and stopped great so it was a very successful day out. I'm always really nervous when a car first hits the track after a long break, especially with a brand new engine as well but it was great. VID-20251011-WA0007.mp4  Big thanks to @The Bogan who dropped by and helped out, @MBS206 and my nephew Lachlan the apprentice.  Neil's wife Mel also surprised the hell out of all of us by dropping by; she's up in Tamworth these days but was travelling to Melbourne so had plausible deniability for turning up at the garage, it was great to see her but also obviously a bit sad all round.
    • Skyline R33 Series 2 sedan tail lights in excellent condition. These are becoming harder to find, especially in this state.    BOTH SETS ARE IN FANTASTIC CONDITION (REFER TO PHOTOS)    ✅ No broken covers or cracks ✅ Lenses are in flawless condition ✅ All rear mounting lugs intact ✅ Comes complete as pictured ✅ Perfect for restoration, replacement, or upgrade   These lights are ready to go, no surprises just quality OEM parts.   These are definitely one of the better sets we have seen in a while. With minimal wear and tear they will come as you see. Bear in mind they are not brand new they are almost 30 years old now. To find them in this condition isn’t easy they can only be obtained on the second hand market.   Australia Wide Postage Available At Buyers Expense. Silver Set:$850 Grey Set:$850 PM Me for purchase or any other questions  IMG_2166.dng IMG_2165.dng IMG_2172.dng IMG_2173.dng IMG_2174.dng IMG_2179.dng IMG_2180.dng IMG_2260.dng IMG_2258.dng IMG_2259.dng IMG_2261.dng IMG_2266.dng IMG_2273.dng IMG_2274.dng IMG_2276.dng
    • Unsolicited advice? Keep the engine as close to stock as you can. Nothing wrong with adding some boost and making a little more power, but given where you are, you really don't want to try to make it into a monster. I can't imagine the roads are up to it, and the lack of locla support when it grenades will be a ball ache. FWIW, If there is a dyno around that you can access, then brand new injectors are a good idea, which will lead you to (at least) putting a Nistune in it, which will allow you to put an R35 AFM on it, all of which will make it possible to make it much much nicer to drive and live with.
×
×
  • Create New...