Jump to content
SAU Community

Recommended Posts

I thought about that one, however I don't know if the thread is the same ?

 

I believe this sensor tells the ECU when the power steering pump is working (especially for iddle)

Looking into r34 gtr and gtt service manual :

- when steering wheel is not turned : 4.6-4.7V meaning switch open

- when it is : 0V meaning switch closed

2 hours ago, bigboss59400 said:

 

Capture d’écran 2024-07-18 084451.png

No, by "the other way around", I meant 4.7V likely to correspond to switch closed, rather than open. You don't get voltage back to the control unit when a switch is open. You will definitely measure a voltage at one of the terminals of a switch when it is open, but it doesn't turn up at the other terminal (and hence then on to the ECU in this case) until it is no longer open.

 

On 7/16/2024 at 12:50 AM, bigboss59400 said:

I thought about that one, however I don't know if the thread is the same ?

 

I believe this sensor tells the ECU when the power steering pump is working (especially for iddle)

Looking into r34 gtr and gtt service manual :

- when steering wheel is not turned : 4.6-4.7V meaning switch open

- when it is : 0V meaning switch closed

It is for idle up signaling when the power steering is under high load. For example if the car is stopped and you turn the steering wheel all the way to the end of travel. My best guess is the thread is identical but unless you can measure yourself it’s hard to be sure. The R32 switch is generic for Nissan so you might be able to find one in a junkyard or a cheap aftermarket alibaba special just to check fitment. Then buy OEM new for actual road use. I’m unclear on whether the R33/34 need the clearance on the switch hence the special part requirement. 

 

10 hours ago, GTSBoy said:

No, by "the other way around", I meant 4.7V likely to correspond to switch closed, rather than open. You don't get voltage back to the control unit when a switch is open. You will definitely measure a voltage at one of the terminals of a switch when it is open, but it doesn't turn up at the other terminal (and hence then on to the ECU in this case) until it is no longer open.

 

I’m pretty sure 4.7V corresponding to open switch is normal. The ECU can detect it too, voltage can exist in the absence of current flow. When the switch closes as the impedance is very low relative to the voltage source it drops to near 0V which can also be sensed. 

Yeah, but that's not normal usage of digital input power to any control system. A switch shorting directly to earth can only pull down the supply side to "zero" volts if there is an extremely high resistance as part of the supply side - effectively a limitation to a tiny current. Otherwise it's a dead short that will just flow as much current as it can.

Normally, as in a PLC digital input card (and indeed, most DIs on most other Nissan ECUs), you will have 12v or 5v available at a terminal on the ECU (or maybe even from elsewhere). That goes out to the switch and only comes back to another terminal on the DI (and this terminal is the actual digital input, the other one is effectively just the supply). With the switch open, no voltage turns up at the DI. With the switch closed, the voltage turns up at the DI. And such inputs are also high impedance to limit current flow to almost nothing. But this is a lot easier to do on the sensing side than it is on the supply side.

I'm quite surprised to see Nissan do what they've done on the R34.

3 hours ago, GTSBoy said:

Yeah, but that's not normal usage of digital input power to any control system. A switch shorting directly to earth can only pull down the supply side to "zero" volts if there is an extremely high resistance as part of the supply side - effectively a limitation to a tiny current. Otherwise it's a dead short that will just flow as much current as it can.

Normally, as in a PLC digital input card (and indeed, most DIs on most other Nissan ECUs), you will have 12v or 5v available at a terminal on the ECU (or maybe even from elsewhere). That goes out to the switch and only comes back to another terminal on the DI (and this terminal is the actual digital input, the other one is effectively just the supply). With the switch open, no voltage turns up at the DI. With the switch closed, the voltage turns up at the DI. And such inputs are also high impedance to limit current flow to almost nothing. But this is a lot easier to do on the sensing side than it is on the supply side.

I'm quite surprised to see Nissan do what they've done on the R34.

On PLC inputs, yes 95% of the time you're sourcing. In automotive, including Nissan's, 95% of DI's are actually sinking. OP is correct. You sink inputs to GND, thus you will have 0VDC with the switch closed. 

Edited by TurboTapin
  • Like 1
7 hours ago, GTSBoy said:

Yeah, but that's not normal usage of digital input power to any control system. A switch shorting directly to earth can only pull down the supply side to "zero" volts if there is an extremely high resistance as part of the supply side - effectively a limitation to a tiny current. Otherwise it's a dead short that will just flow as much current as it can.

Normally, as in a PLC digital input card (and indeed, most DIs on most other Nissan ECUs), you will have 12v or 5v available at a terminal on the ECU (or maybe even from elsewhere). That goes out to the switch and only comes back to another terminal on the DI (and this terminal is the actual digital input, the other one is effectively just the supply). With the switch open, no voltage turns up at the DI. With the switch closed, the voltage turns up at the DI. And such inputs are also high impedance to limit current flow to almost nothing. But this is a lot easier to do on the sensing side than it is on the supply side.

I'm quite surprised to see Nissan do what they've done on the R34.

There's a lot of things that are weird on the R-chassis wiring/circuit design. Link highlights all the time how parts of the AC control system are always connected to +12V which can cause weird interactions that cause their ECU to brown out and cause no-starts in circumstances that it shouldn't. Nothing obscene, but just a little funny and no longer considered best practice.

Bah! I just went and had a look. Pretty much all of the switches that I would have expected to be externally sourced and sunk at the ECU (on R32, such as TPS, neutral switch, etc) were ECU sourced. And now I have to wonder what sort of drugs the automotive engineering world have been taking.

16 hours ago, GTSBoy said:

Bah! I just went and had a look. Pretty much all of the switches that I would have expected to be externally sourced and sunk at the ECU (on R32, such as TPS, neutral switch, etc) were ECU sourced. And now I have to wonder what sort of drugs the automotive engineering world have been taking.

There's advantages and disadvantages to both. Sourced DI's are used in automotive for reliability (You can't short signal wires) and ease of use (You have chassis GND available to you anywhere). 

 

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Hi Guys, Does anyone know any aftermarket part numbers for a starter motor to suit the VQ25DET? I can find lots of alternative part number for the VQ35DE, which I assume would fit, but there is a lot of conflicting information out there. Thanks..
    • I don't understand how this hasn't boiled down to - Upgrade the turbo when you have everything required. ECU, injectors, fuel pump, turbo, etc. Do it all at once.  If you don't have everything required, just enjoy the car as it is and keep saving up your pennies. 
    • Sounds like you've got an interesting adventure ahead here with local support if you have trouble! My guess is that, unboosted, you will be OK with a small upgrade like -9. What will happen is that once the stock ECU sees more airflow than it expects it will add a heap of fuel and pull a heap of timing to be safe because it can't understand how it could get that much air without there being an issue. You will see clouds of black smoke and it won't pull hard through the midrange and top end. So, overall it will be a bit frustrating but should be OK. If you are still nervous set the base timing back 2o through the CAS, but it will be even more sluggish everywhere. As said above through...this is not my guarantee your engine won't be blown into a million pieces, leaving you looking for very hard to find parts A better idea is get a computer with logging ASAP, wire in a wide band O2 sensor and a use remote tuner. I've done multiple cars this way and while it is not as good as a specific tune on a dyno they can get it 90% right. I'd suggest if you can afford an R33 GTR these days you can afford an ECU and tune. And if you can't afford that you sure won't be able to afford the rebuild if it goes bad in the meantime,.  
    • Yeah it would be nice if someone took the time to put that sort of information together, but there are a lot of variations in looms. I think you are making this way hard for yourself if you just want to get it running....sourcing an SR20 with the right wiring will be a billion times easier than matching the RB loom to an S15 chassis. If you do end up going this way, you just need to trace every wire in the loom with a multimeter, 95% of them will go to a location you can confirm at the ECU.....and then post it up for the next person who needs it  
    • Just top it up with water, and keep a general idea of how much you added. It is normal for water to be pushed into and pulled out of the reservoir through the cap, and it should not be more than half full or it will be likely to overflow when hot. Any decent mechanic can do a pressure test of the cooling system to confirm if you have a leak. Keep in mind if it is only leaking a little and when hot it may well evaporate before you see it hit the ground
×
×
  • Create New...