Jump to content
SAU Community

Recommended Posts

  • Replies 152
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Rexbo

Come on mate - when was th last time F1 was turbo!! they are not running 'a big single' they are NA!... Audi ran twins in the LM cars, as did toyota & nissan THIS YEARS WINNER Bently speed 8 - OH LOOK!! TWIN TURBOS - SHOCK!!!. Ever look at the serria cosworth 500? comments from the drivers of the time speak of the difficulties when the thing came onto boost - it ran a single and raced against the TT GTR... JGTC - the R34 ran the V6TT that is now in the Zed.... I think you will find twins are used for more than just packaging or sales hype.

One way to put this to bed, is get two IDENTICAL engines and slap on a set of twins on one and a single on the other. Careful attention would need to be paid to the manifold design of both to ensure they both got the best gas flow. Otherwise, same came, ecu injectors etc.....

I guess looking at a performance application on a Skyline, you could run twin 3 inch pipes off twins, or a single 4 inch off a single? Maybe even a 4.5inch, although this would impinge on your arguements that a single has more space - ever tried to fit a pipe that size anywhere on a car?

Twin 3 inch area = 14 sq inch

Single 4 inch area = 12sq inch

Also the flow on the turbine inlet/ turbo flange could be another comparison. Funny side story, they have actually started to put flange size restrictions in on turbo drag classes in the states, guess there must be some hidden horsepower in having the largest flange possible?

The problem is actually getting the wheels seperate to weigh them - you can extrapolate as much as you want but in the end it's only going to be an approximation.

I think in the end - large single for drags, small twins for circuit/street. It's been proven time and time again, but like I said you can make any combination work with sufficient resources and planning.

Rexbo

Come on mate - when was th last time F1 was turbo!! they are not running 'a big single' they are NA!... Audi ran twins in the LM cars, as did toyota & nissan THIS YEARS WINNER Bently speed 8 - OH LOOK!! TWIN TURBOS - SHOCK!!!. Ever look at the serria cosworth 500? comments from the drivers of the time speak of the difficulties when the thing came onto boost - it ran a single and raced against the TT GTR...  JGTC - the R34 ran the V6TT that is now in the Zed.... I think you will find twins are used for more than just packaging or sales hype.

One way to put this to bed, is get two IDENTICAL engines and slap on a set of twins on one and a single on the other.  Careful attention would need to be paid to the manifold design of both to ensure they both got the best gas flow. Otherwise, same came, ecu injectors etc.....

The last time F1 was turbo was 1988... running single turbos. The Le Mans cars now run twin turbos due to packaging constraints and rule mandates.

As to the rotating inertia, that is a very good valid point, which is why i say twins have better response at already high rpm, because they do have less rotating inertia. However there is a critical key missing from this, and its not pulsematching or inertia, its the pressure differential and efficiency on the turbine side of the turbo.

A single turbo will have a larger pressure differential across the turbine wheel than twins, causing faster spoolup than equivalent twins. The spoolup capability due to the pressure differential is also largely due to turbine efficiency. Larger wheels will always have higher efficiency than smaller wheels for the same reason that large combustion chambers have higher burning efficiency in and engine. There's less internal loss due to heat transfer and friction. Twin small turbos create lots of drag on the exhaust gas from the turbine housing walls and the turbine wheel blades. Also, more of the heat from the engine is transferred to the metal in the turbo, taking away from the energy of the exhaust gas. Now when i talk about this, im talking about terms of 3-5% less efficient than a single turbo. Its not much but everything helps, thats why extrude honing your exhaust housing is beneficial.

Something else that someone brought up at work is that the advantage of a single turbo dissipates as the number of cylinders of the engine goes up. If you look at the combustion cycles of engines, a 4 cylinder engine takes 2 rotations of the crank to fire all 4 cylinders, and the subsequent exhaust gas pulses are easily tuneable to hit the turbo efficiently, more so than tuning for 3 cylinders that don't fire evenly. Also when dealing with V-engines, a single turbo setup requires long exhaust manifold runners and a lot of space, which would be beneficial on a V6, but on a V8, V10 or V12, the story would be different.

Its all a tradeoff between cost and benefit, as is all racing. Cost not being money, but performance, packaging, weight, and in the end, its all speed in a race car.

This is a really good thread, I like it!

This is about street cars, that might see a mild amount of circuit work. Drawing comparisons to F1 and "ideal" systems is bollocks, cause it ain't going to happen this weekend. Oh how large is an F1 motor? 1500cc? Have you seen a F1 turbo? UAS John has had a couple come through his hands from Keith Carling's car, and they aren't that big at all - hell two were used on a 3,000cc VG30 engine. So what's the deal there? They also spun at unrealistic levels to maintain sufficient boost pressures - I think the comp map went up to 4 bar?

Use a real world example - say 1000hp on an RB26. From the Garrett catalogue, this would see a combination of either

1/ Twin GT30R turbos or

2/ One GT42RS turbo

Looking at the max turbine efficiency graph the GT42RS comes in at 69%, the GT30R at 72%. I'm not sure I can trust Garrett's published figures, but take it with a grain of salt they are correct. Where is the uber efficient large wheel here?

If the pressure differential created say "x" amount of force, bearing in mind that both the inertia and turbine efficiency of the smaller turbo is superior, how in hell would that spool a large turbo quicker?

both the inertia and turbine efficiency of the smaller turbo is superior[/qoute]

Am i missing somthing ..... yes they intertia is less but dont you have 1/2 the amount of exhaust gas to move it ???

Hence it would have to be twice as effiecent "inertia" wise then a single turbo to be the same .......

So is a split pulse turbo better or worse???

Im guessing in the case of twins normal would be best.

Also is a even or uneven split pulse turbo better than the other??? Assuming split pulse is better.

Oh and for inertia:

Inertia = radius of gyration^2 x mass

As you can see, a large wheel will dramatically increase inertia.

Yes but since inertia is a square of the radii it is not proportional. If you half the radii you quarter the inertia.

Some more to think about............

The 2 X turbines/shaft/compressor of my 2530's weigh more than 3 times as much as the 1 X titanium turbine/shaft/ compressor of my T66. Plus the ceramic ball bearings used in the T66 have ~30% less running friction than the plain ball bearings used in the 2530's.

I'm too tired ot work it out.................. :)

So in effect your trick, no doubt cheap and mass produced turbo combination, weighs approximately 1.5 times a single 2530 rotating combination. Apples for zuchinni flowers maybe?

Doing a gross injustice and highly wrong calculation on it,

2530= exducer dia = 60.1mm, mass = 1, Inertia 903

T66 = exducer dia = 91.5mm, mass 1.5, Inertia 2093

So 2x 903 =.... 1806?

Also, I'm assuming that the measured reduction in frictional losses are from equivalent sized bearings? Take into account that most Txx series use the large 3/8th (9.5mm) shaft, where a 2530 has a 5mm shaft size? So the actual bearing surface is twice as large assuming same width, which is probably wrong as well since the larger shaft would need a wider bearing surface too? So if you assumed the bearing was only 1.5 times the width, that would still give you a surface area 1.5 times the amount found on 2x 2530's, less 30% for innovative design of the ceramics. So 20% more friction end result on the T66?

Yeah it's late and I am playing devil's advocate, a well as making absurd guesstimates. The T66 probably does everything the 2530's do, and is easier to work on - and gets alot of ooohs when you pop the bonnet ;)

Now i like the twin turbo idea where they're sequential sequence turbos. You have one large turbo spool into another smaller turbo. Say your "large" turbo is a GT28 on an RB25. That would spool up plenty fast for everyone, agreed? taken from post 73.

Now having had a very detailed look at the bandag bullet and discussing it with the owner, it doesn't work this way... If anyone is not familiar with it, it runs 2 V8's in tandem, 2 x superchargers and 4 turbos. it is the 2 smaller turbos that are feeding the 2 larger units, not the other way around.

Guest
This topic is now closed to further replies.



  • Similar Content

  • Latest Posts

    • Any update on this one? did you manage to get it fixed?    i'm having the same issue with my r34 and i believe its to do with the smart entry (keyless) control module but cant be sure without forking out to get a replacement  
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • perhaps i should have mentioned, I plugged the unit in before i handed over to the electronics repair shop to see what damaged had been caused and the unit worked (ac controls, rear demister etc) bar the lights behind the lcd. i would assume that the diode was only to control lighting and didnt harm anything else i got the unit back from the electronics repair shop and all is well (to a point). The lights are back on and ac controls are working. im still paranoid as i beleive the repairer just put in any zener diode he could find and admitted asking chatgpt if its compatible   i do however have another issue... sometimes when i turn the ignition on, the climate control unit now goes through a diagnostics procedure which normally occurs when you disconnect and reconnect but this may be due to the below   to top everything off, and feel free to shoot me as im just about to do it myself anyway, while i was checking the newly repaired board by plugging in the climate control unit bare without the housing, i believe i may have shorted it on the headunit surround. Climate control unit still works but now the keyless entry doesnt work along with the dome light not turning on when you open the door. to add to this tricky situation, when you start the car and remove the key ( i have a turbo timer so car remains on) the keyless entry works. the dome light also works when you switch to the on position. fuses were checked and all ok ive deduced that the short somehow has messed with the smart entry control module as that is what controls the keyless entry and dome light on door opening   you guys wouldnt happen to have any experience with that topic lmao... im only laughing as its all i can do right now my self diagnosed adhd always gets me in a situation as i have no patience and want to get everything done in shortest amount of time as possible often ignoring crucial steps such as disconnecting battery when stuffing around with electronics or even placing a simple rag over the metallic headunit surround when placing a live pcb board on top of it   FML
    • Bit of a pity we don't have good images of the back/front of the PCB ~ that said, I found a YT vid of a teardown to replace dicky clock switches, and got enough of a glimpse to realize this PCB is the front-end to a connected to what I'll call PCBA, and as such this is all digital on this PCB..ergo, battery voltage probably doesn't make an appearance here ; that is, I'd expect them to do something on PCBA wrt power conditioning for the adjustment/display/switch PCB.... ....given what's transpired..ie; some permutation of 12vdc on a 5vdc with or without correct polarity...would explain why the zener said "no" and exploded. The transistor Q5 (M33) is likely to be a digital switching transistor...that is, package has builtin bias resistors to ensure it saturates as soon as base threshold voltage is reached (minimal rise/fall time)....and wrt the question 'what else could've fried?' ....well, I know there's an MCU on this board (display, I/O at a guess), and you hope they isolated it from this scenario...I got my crayons out, it looks a bit like this...   ...not a lot to see, or rather, everything you'd like to see disappears down a via to the other side...base drive for the transistor comes from somewhere else, what this transistor is switching is somewhere else...but the zener circuit is exclusive to all this ~ it's providing a set voltage (current limited by the 1K3 resistor R19)...and disappears somewhere else down the via I marked V out ; if the errant voltage 'jumped' the diode in the millisecond before it exploded, whatever that V out via feeds may have seen a spike... ....I'll just imagine that Q5 was switched off at the time, thus no damage should've been done....but whatever that zener feeds has to be checked... HTH
×
×
  • Create New...