Jump to content
SAU Community

Recommended Posts

I have just recieved my ARC intercooler for my R33 GTR. The kit comes with piping and also some solid plugs to fit into the BOV lines. I am not sure if I should be installing after market BOV's or not. Will the Lack of BOV's cause issues?? Or is the a ploy by ARC to increase engine response...from what I can see the twin entry piping will not fit with the BOV return line.

Matt

ARC.php.jpg

post-2338-1146723432.jpg

Edited by BOOSTD
Link to comment
https://www.sau.com.au/forums/topic/116354-arc-twin-entry-intercooler/
Share on other sites

you dont need to use that side's (the BOV side) piping. you could still use the standard one and then you wont have to worry about having to change BOV's or blocking it off. Personally, i would keep the stock ones on.

Not sure if I follow you guys. The ARC cooler kit has twin inlets. The associated piping has to have the BOV return pipe reomoved to fit. (from the two inlet pipes after the AFM's) Also the return BOV plastic pipe behind the intercooler has to be removed as the angle ARC have set the intercooler on is pretty large.(leaning forward)

I just finished installing my ARC intercooler. My initial impession was a massive increase in low to midrange and much sharper throttle response. After further investigation I found the car was running significantly lower boost but no loss in power. I put this down to much less restriction from the intercooler....which is what ARC are all about. At .6 bar in first and second the car spins up all 4 and changes lanes by itself. I haven't loaded it up in any other gear as the tuning is all up to sh$T now. I can't wait for another dyno run so I can over lap the two.

Conclusion <ARC are GODS>

PS this cooler replaced a TRUST item of same thickness

... if you're measuring _after_ the cooler, a lower pressure drop across the cooler due to restriction

should theoretically see a pressure _increase_ at the measurement point (i.e. higher boost) all other

things being equal. So in theory, your newer cooler could be a larger restriction, resulting in lower

displayed boost at the plenum.

All other things, of course, aren't equal. If the cooler is cooling better, you should have denser air

at the measurement point - lower volume - lower boost, all other things being equal (they aren't :)).

I'd guess that this is what's happened - did you happen to take any temp readings before/after the change?

ARC have a good rep for a good reason; shame their kit's so expensive.

Regards,

Saliya

Im confused?????

I understand that a better flowing core will flow more at less boost but you said you didnt touch the boost setting, or thats what I assumed. So from your theory, if you got an even better flowing core than this one boost would drop again without touching the settings? And that if you removed the core and ran a straight pipe boost would lower by itself again?

Transversely, if you fitted a restrictor with a 5mm opening your boost pressure would rise dramatically without adjusting settings according to your reasoning. Is that what your saying?

I thought what Roy thought and that if your new cooler flowed better that pressure would rise on its own and you would have to adjust it lower.

... if you're measuring _after_ the cooler, a lower pressure drop across the cooler due to restriction

should theoretically see a pressure _increase_ at the measurement point (i.e. higher boost) all other

things being equal. So in theory, your newer cooler could be a larger restriction, resulting in lower

displayed boost at the plenum.

This is exactly what i was thinking. As others have stated, less restriction in the I/C, will results in a higher boost level

less restriction means you can put more air through the piping and engine with less work in the turbo, so the more boost is capable. 8psi in a normal I/C flows less air then 8psi in a high flow situation. This is the same with stock turbos and higflow turbos.

boost is measured at the plenum.

boostd is a measurement of restriction, flow is what makes power. The cooler flows the same at less boost

I think we are missing part of the equation. You havent touched your boost settting. So say before they were pumping out 14psi measured at your inlet plenum. With the std cooler you may have had say a 2psi pressure drop. You may have foud that if you measured boost at the turbo outlet before the intercooler then you may have actually been running 16psi...only because of the pressure drop your engien never saw that boost level.

So you install a better flowing intercooler...so now that 16psi your turbos were having to pump out to see 14psi at the plenum will be more likely seen at the plenum. So that would mean more boost at the plenum.

So something isnt right

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Well, I'm tired. I'm tired because about 4PM yesterday, before today's appointment someone immediately bought my bumper. They couldn't get it any other day as they're on the way back to NSW. So I had to do that big GTR conversion I had been planning. Unfortunately, the information on SAU about what you need and how this is done is incomplete. So what should be a simple bolt on affair, yeah, it's not. Did you know if you use all GTR items the bonnet won't close? This little manuever sent me into about 1am the night before trying to dodge a way to get it closed. I will have to revisit this in the next few days  - or maybe not, I may let a body shop figure it out. It all needs to come up and my motivation to pull the bumper off is low. It also seems to hit things in the bay where the GTT bonnet didn't. Yes I used 100% new OEM GTR items. Today, I had the joy of driving to the dyno looking like this: Given I had roughed in the fuel and given sensible but pretty conservative timing, I didn't really bet on having the car drive out any real difference than when it drove in. Sadly due to a miscommunication and laptop fun and games (and almost bricking the dongle, prayers and firmware updates indeed), I ended up using HP Tuner credits to licence the car that was already licenced. So in the end my laptop was used. It turns out my butt dyno is still well calibrated after all this time. The 325kw was on 74% Ethanol, the 313kw line was on 98. The other line is the 'before' line which was 281kw. While the numbers are pretty low, they're pretty in line with what you'd expect. Even if US dynos bump the whole result up about 50KW, gaining 10-15% is similar gains.  The curve of the cam is pretty much spot on with what was discussed as well. All this said, it still feels bad to not see the number you secretly want to see. Even if the car drove great beforehand, and I knew pretty confidently the car would drive out much the same way it drove in due to the nature of a wellish dialled in LS1 not gaining much if anything at all from being tuned from where it was. As expected, the car isn't particularly sensitive to running it at anywhere between 12.0 and 13.0 - And the initial timing at 20deg and 12.0 made 308KW. So 3 degrees of timing, and leaning it out to 12.7 for 5kw, anything above stopped giving any benefit until E85 (which has an additional 2 deg as before). Car itself behaved entirely fine. I found out that 100C = 1.15V! IAT at about 7pm was 19C. I might mess with the bonnet mounting.. but given the REO NEEDS TO BE CHOPPED TO FIT A GTR BAR this is possibly something I may leave gathering (more) dust until it returns to paint jail.
    • It sounds farrrrrrr too cold at your place Duncan... Here I was thinking our 10 degrees overnight is getting cold...
    • oh yeah, reminded this morning....bin lids frozen shut too
    • In my case not, because of total reno. But yeah.
    • Did you use an electronic speedo drive? Does you speedometer read all the way to 180km?
×
×
  • Create New...