Jump to content
SAU Community

Recommended Posts

i recently read a post on this forum where a member was stating that his PSI level had rose from 7psi to 9psi just by installing a FMIC ..

how exactly does this occur when the stock ECU still has a boost soleniod setting of 5psi low and 7psi high

Link to comment
https://www.sau.com.au/forums/topic/166768-fmic-increases-psi/
Share on other sites

The factory smic is restrictive, thus if you where to measure the boost b4 the smic it will be higher than the boost after the smic. Installing a better flowing cooler will have less restictions, therefor the boost b4 and after the cooler will almost be the same.

The factory solenoid is similar to a bleed valve, as is calculated/manufactured to allow the turbo to boost up to 9psi. This is with the restictive smic, replace with a fmic will reduce restriction, therefor flow more air.

based on my experience with silvias the factory cores have on average a pressure drop of about 2-3psi an aftermarket one has on average less than that and the average differrence in pressure drop is realised as a boost increased.

this also depends on where the actuator gets it signal from

on the r32 it comes off the compressor cover so it wouldnt be an issue on the 32

but the r33 gets it post intercooler so its after intercooler core drop

based on my experience with silvias the factory cores have on average a pressure drop of about 2-3psi an aftermarket one has on average less than that and the average differrence in pressure drop is realised as a boost increased.

Pressure differentials across intercooler cores is based on airflow more so than boost pressure. Its just that higher boost pressure usually means more airflow. So your figures are a little ambiguous.

Pressure differentials across intercooler cores is based on airflow more so than boost pressure. Its just that higher boost pressure usually means more airflow. So your figures are a little ambiguous.

if an intercooler is a restriction then the pressure will be higher before the cooler than after. the more of a restriction the higher the difference.

it's interesting, because we all not that standard boost for an RB20 is 10psi, and standard boost for an RB25 is 5/7psi... but they're measure from different locations...

but if we were to measure them from the same place we might get similar figures. Just thinking out loud.

it's interesting, because we all not that standard boost for an RB20 is 10psi, and standard boost for an RB25 is 5/7psi... but they're measure from different locations...

but if we were to measure them from the same place we might get similar figures. Just thinking out loud.

You won't as the r32 actuator is rated to open at a higher pressure.

Grab an r33 actuator and r32 actuator; the r32 actuator is considerably stiffer.

You shouldn't really get a pressure increase at all!

The same pressure is hitting the solenoid, at 7PSi before or after the intercooler change.

Alot of people actually notice a pressure DROP (If pressyre taken before intercooler) due to a more affective cooling intercooler (Pressure is dependant on temperature too!)

And if the actuator gets it's pressure from AFTER the intercooler, there should be ZERO change in pressure.

If the actuator is set to open at 7PSI with x amount of air bled off, then it will open at 7PSi after some air is bled off.

You won't as the r32 actuator is rated to open at a higher pressure.

Grab an r33 actuator and r32 actuator; the r32 actuator is considerably stiffer.

I was just wondering to myself, if Nissan would have compensated the pressure drop into the adjustment of their actuators, but then I wondered where WE are measuring boost from, so that probably comes into play. But hey like you said the r32 actuator is stiffer anyway so there you go... (still thinking out loud)

this also depends on where the actuator gets it signal from

on the r32 it comes off the compressor cover so it wouldnt be an issue on the 32

but the r33 gets it post intercooler so its after intercooler core drop

LOL...ah, now you agree with me. I remember you thinking i was on drugs when i was commenting why R32s make more boost at the inlet after a fmixc install :(

hmmm....fmic = MUST more driveable car with more consistent results. cold nights also make a BIGG differnece where as before was always crap by comparison. split front / dump 4psi increase with stock controller..... *yeS*

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Bit of a pity we don't have good images of the back/front of the PCB ~ that said, I found a YT vid of a teardown to replace dicky clock switches, and got enough of a glimpse to realize this PCB is the front-end to a connected to what I'll call PCBA, and as such this is all digital on this PCB..ergo, battery voltage probably doesn't make an appearance here ; that is, I'd expect them to do something on PCBA wrt power conditioning for the adjustment/display/switch PCB.... ....given what's transpired..ie; some permutation of 12vdc on a 5vdc with or without correct polarity...would explain why the zener said "no" and exploded. The transistor Q5 (M33) is likely to be a digital switching transistor...that is, package has builtin bias resistors to ensure it saturates as soon as base threshold voltage is reached (minimal rise/fall time)....and wrt the question 'what else could've fried?' ....well, I know there's an MCU on this board (display, I/O at a guess), and you hope they isolated it from this scenario...I got my crayons out, it looks a bit like this...   ...not a lot to see, or rather, everything you'd like to see disappears down a via to the other side...base drive for the transistor comes from somewhere else, what this transistor is switching is somewhere else...but the zener circuit is exclusive to all this ~ it's providing a set voltage (current limited by the 1K3 resistor R19)...and disappears somewhere else down the via I marked V out ; if the errant voltage 'jumped' the diode in the millisecond before it exploded, whatever that V out via feeds may have seen a spike... ....I'll just imagine that Q5 was switched off at the time, thus no damage should've been done....but whatever that zener feeds has to be checked... HTH
    • I think Fitmit had some, have a look on there (theyre Australian as well)
    • Hah, fair enough! But if you learn with this one you can drive any other OEM manual. No modern luxury features like auto rev-matching or hillstart assist to give you a false sense of confidence. And a heavy car with not that much torque so it stalls easily. 
    • Actually, I'd say all three are the automatic option. Just the different trim levels. The manual would be RSFS, no? 
×
×
  • Create New...