Jump to content
SAU Community

Recommended Posts

Finally got my R on the dyno today.

All i have done is 3" cat back with a cat removal pipe (yay nz)

It came up with 222 at the rears on 16psi. Now I know thats not really stock boost but it still has the restrictor in it and removing it only got me 2 psi and 8kw.

Is it normal for boost to be this high with just the exhaust fitted?

Link to comment
https://www.sau.com.au/forums/topic/296970-222rwkw-on-stock-boost/
Share on other sites

You are running GTR turbos @ 16psi?

That is not normal.

Power is a bit low, generally 1bar (14.7psi) will usually see 240-250rwkw. So considering you are running a bit more... not so good.

Start off by back the boost off to a safer level, 12-14psi max for GTR turbos (if one dies, it generally will kill your motor).

Then get some cam gears and a front pipe (fine with stock dumps), and then you should see a better result or similar, with less boost.

You are running GTR turbos @ 16psi?

That is not normal.

Power is a bit low, generally 1bar (14.7psi) will usually see 240-250rwkw. So considering you are running a bit more... not so good.

Start off by back the boost off to a safer level, 12-14psi max for GTR turbos (if one dies, it generally will kill your motor).

Then get some cam gears and a front pipe (fine with stock dumps), and then you should see a better result or similar, with less boost.

I would assume by his post that he does not have a boost controller. He won't be able to back boost off

Well he removed the restrictor and gained another 2psi (18psi peak), is what i took from the way he worded it...

If there is a hole/split in the line then it is entirely possible to have increased boost without adjusting the actuators or a boost controller of some description.

Well he removed the restrictor and gained another 2psi (18psi peak), is what i took from the way he worded it...

If there is a hole/split in the line then it is entirely possible to have increased boost without adjusting the actuators or a boost controller of some description.

Yeah thats right, 18psi with the restrictor out. No other boost control system. What size is the hole in the restrictor meant to be?

Its weird tho, the dyno graph starts with boost already at 2psi at 40kmh in 3rd, so Im wondering if his sensor is a bit out and its actually running 14psi. Will have to get my own gauge and double check it.

How come one turbo dying takes out the motor?

ceramic exhaust wheel, usually the rear turbo.

wheel shatters, sends ceramic shards/dust back onto the piston - do a search mate, plenty of detailed threads with pictures etc etc.

basically the older the turbos, the more risk you run when going over 12-14psi

I tried to find an answer to that very question Brandon and no one came forth as such. Still it appears to be common knowledge so it would be highly recommended to make sure you are running safe boost levels for stock turbos.

I tried to find an answer to that very question Brandon and no one came forth as such. Still it appears to be common knowledge so it would be highly recommended to make sure you are running safe boost levels for stock turbos.

Yea, same here. Not that it affects me but whenever someone ask what pressure should they be running for stock turbo, I'll just reply 12psi to be safe. Some lucky ones may have gotten away with 14psi or 15psi for years but you cant expect every single turbo's the same. Morale of the story is, I rather be safe than sorry. You've got no one else to blame but yourself if it does shits itself.

It'll be a very costly experience or lesson to learn.

Actually I reread the thread and the data is fairly conclusive. Dead turbo results in ceramic dust being embedded in the piston on the exhaust side, check the photos out :action-smiley-069:.

http://www.skylinesaustralia.com/forums/De...ad-t283890.html

I was gonna say - its pretty clear and conclusive what can happen, pictures are clear evidence of it occuring despite the what the "theorists" might tell you about it not being possible.

Not to doubt anything you are saying but can you PM me links to at least one of those threads. I would like to do some reading on the topic and find where they have had the 'dust' tested and confirmed it is actually ceramic

There is one linked above already?!?!

Considering it is on the exhaust side of the piston, what else is it honestly going to be after a turbo has let go?

Dirt? Sand? Come on...

EDIT: i know, they must be tiny rocks that started off as big rocks that made it past the air filter, were minced up by the compressor wheel, sent through the cooler and TB's and then somehow ended up soley on the exhaust side! :D

No, if its dust or rocks then its drugs! nothing to do with ceramics. If you have negative pressure in the motor compared to the turbine or exhaust then the air will flow to that negative pressure...simple really.

Any hard and non combustible object entering the combustion chamber = bad. Ceramic turbos are a time bomb for your engine if you're overboosting them...might aswell take off your air filter for better flow too :D

Also note it varies from compressor to compressor and engine to engine how much psi you can get away with on stock ceramic turbos.

Finally got my R on the dyno today.

All i have done is 3" cat back with a cat removal pipe (yay nz)

It came up with 222 at the rears on 16psi. Now I know thats not really stock boost but it still has the restrictor in it and removing it only got me 2 psi and 8kw.

Is it normal for boost to be this high with just the exhaust fitted?

yep soon as the restrictor is removed the std ecu pours in the fuel and dumbs it down. Most GTR's will pull around 190-200rwkw with a stock ecu, with a mines ecu they will pull around 220 (loads more timing about 29 degrees peak but still rich) a remap will yeild 230rwkw at less boost or 240kw with the restrictor removed and the remap controlling boost.... Sarumatix yours still has the highest reading on my dyno for a std rb26 so dont worry..... yet :D

Edited by URAS
There is one linked above already?!?!

Considering it is on the exhaust side of the piston, what else is it honestly going to be after a turbo has let go?

Dirt? Sand? Come on...

EDIT: i know, they must be tiny rocks that started off as big rocks that made it past the air filter, were minced up by the compressor wheel, sent through the cooler and TB's and then somehow ended up soley on the exhaust side! :)

ROFL.

Yes, not saying it isn't ceramic but no one has actually proven it to be that.

Keep in mind that you are talking about dust, not chunks, and when a turbine wheel comes off, what happens to the comp wheel? It starts machining the housing away at the front. This creates dust also. What happens to alloy dust when you burn it? It looks like what you'd imagine ceramic to look like.

Theories of engines sucking blades back into themselves is a bit far fetched. Can happen, I'm sure, but you guys all make out like it's going to happen to every single GTR turbo that ever existed.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Who did you have do the installation? I actually know someone who is VERY familiar with the AVS gear. The main point of contact though would be your installer.   Where are you based in NZ?
    • Look, realistically, those are some fairly chunky connectors and wires so it is a reasonably fair bet that that loom was involved in the redirection of the fuel pump and/or ECU/ignition power for the immobiliser. It's also fair to be that the new immobiliser is essentially the same thing as the old one, and so it probably needs the same stuff done to make it do what it has to do. Given that you are talking about a car that no-one else here is familiar with (I mean your exact car) and an alarm that I've never heard of before and so probably not many others are familiar with, and that some wire monkey has been messing with it out of our sight, it seems reasonable that the wire monkey should be fixing this.
    • Wheel alignment immediately. Not "when I get around to it". And further to what Duncan said - you cannot just put camber arms on and shorten them. You will introduce bump steer far in excess of what the car had with stock arms. You need adjustable tension arms and they need to be shortened also. The simplest approach is to shorten them the same % as the stock ones. This will not be correct or optimal, but it will be better than any other guess. The correct way to set the lengths of both arms is to use a properly built/set up bump steer gauge and trial and error the adjustments until you hit the camber you need and want and have minimum bump steer in the range of motion that the wheel is expected to travel. And what Duncan said about toe is also very true. And you cannot change the camber arm without also affecting toe. So when you have adjustable arms on the back of a Skyline, the car either needs to go to a talented wheel aligner (not your local tyre shop dropout), or you need to be able to do this stuff yourself at home. Guess which approach I have taken? I have built my own gear for camber, toe and bump steer measurement and I do all this on the flattest bit of concrete I have, with some shims under the tyres on one side to level the car.
    • Thought I would get some advice from others on this situation.    Relevant info: R33 GTS25t Link G4x ECU Walbro 255LPH w/ OEM FP Relay (No relay mod) Scenario: I accidentally messed up my old AVS S5 (rev.1) at the start of the year and the cars been immobilised. Also the siren BBU has completely failed; so I decided to upgrade it.  I got a newer AVS S5 (rev.2?) installed on Friday. The guy removed the old one and its immobilisers. Tried to start it; the car cranks but doesnt start.  The new one was installed and all the alarm functions seem to be working as they should; still wouldn't start Went to bed; got up on Friday morning and decided to have a look into the no start problem. Found the car completely dead.  Charged the battery; plugged it back in and found the brake lights were stuck on.  Unplugging the brake pedal switch the lights turn off. Plug it back in and theyre stuck on again. I tested the switch (continuity test and resistance); all looks good (0-1kohm).  On talking to AVS; found its because of the rubber stopper on the brake pedal; sure enough the middle of it is missing so have ordered a new one. One of those wear items; which was confusing what was going on However when I try unplugging the STOP Light fuses (under the dash and under the hood) the brake light still stays on. Should those fuses not cut the brake light circuit?  I then checked the ECU; FP Speed Error.  Testing the pump again; I can hear the relay clicking every time I switch it to ON. I unplugged the pump and put the multimeter across the plug. No continuity; im seeing 0.6V (ECU signal?) and when it switches the relay I think its like 20mA or 200mA). Not seeing 12.4V / 7-9A. As far as I know; the Fuel Pump was wired through one of the immobiliser relays on the old alarm.  He pulled some thick gauged harness out with the old alarm wiring; which looks to me like it was to bridge connections into the immobilisers? Before it got immobilised it was running just fine.  Im at a loss to why the FP is getting no voltage; I thought maybe the FP was faulty (even though I havent even done 50km on the new pump) but no voltage at the harness plug.  Questions: Could it be he didnt reconnect the fuel pump when testing it after the old alarm removal (before installing the new alarm)?  Is this a case of bridging to the brake lights instead of the fuel pump circuit? It's a bit beyond me as I dont do a lot with electrical; so have tried my best to diagnose what I think seems to make sense.  Seeking advice if theres for sure an issue with the alarm install to get him back here; or if I do infact, need an auto electrician to diagnose it. 
    • Then, shorten them by 1cm, drop the car back down and have a visual look (or even better, use a spirit level across the wheel to see if you have less camber than before. You still want something like 1.5 for road use. Alternatively, if you have adjustable rear ride height (I assume you do if you have extreme camber wear), raise the suspension back to standard height until you can get it all aligned properly. Finally, keep in mind that wear on the inside of the tyre can be for incorrect toe, not just camber
×
×
  • Create New...