Jump to content
SAU Community

Recommended Posts

Hi guys, I'm upgrading the turbos on my gtr and have aquired thusfar:

-700cc injectors

-2860-5s (without actuators)

-power FC

-nismo afm's

-am performance dumps

-adjustable cam gears

The turbo does not have any oil feed or drain flanges... Should I pull these of my stock turbos? If not can anyone link me to suitable place I could buy them.

Also, what else would you say that I am missing to complete the upgrade? Gaskets ect?

Appreciate the help!

Thanks

Link to comment
https://www.sau.com.au/forums/topic/436649-r33-gtr-turbo-upgrade/
Share on other sites

Call GCG.

1300 887 267

They have the oil drains there. $65 IIRC. I'm not 100% sure if the stock ones are different to the Afternarket garret stuff, but the HKS drains need to be modified.

Yea, I was going to get my actuators from there. What about oil feed and restrictors? Is there anywhere in particular I should look for them?

Yea, I was going to get my actuators from there. What about oil feed and restrictors? Is there anywhere in particular I should look for them?

just use the factory oil feed lines, the oil drain pipes are best ordered from gcg

Ditch the ECU all together, much better ECU's out there now. Link / Vipec, Haltech. There is nothing wrong with the old Power FC as such, its just that they are very old now and there are better options around. They still use AFM's which are fiddly at times and a MAP Sensor is hassle free in comparison. Power FC dont really offer much by way of upgrades / options. Link, Vipec, Haltech all have lots of options and accessories to add to them. Motorsports stuff, Flex fuel sensor capability, much better boost control options etc

IIRC the drains and all coolant / oil lines should work from the standard turbo's. Just get yourself a stack of new gaskets.

For gaskets try calling Powertune. They are having a moving sale at the moment and may very well have the gasket kits laying around. The kits will come with everything. Copper seals for the coolant and oil lines, new intake gaskets, new flange gaskets etc

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • For once a good news  It needed to be adjusted by that one nut and it is ok  At least something was easy But thank you very much for help. But a small issue is now(gearbox) that when the car is stationary you can hear "clinking" from gearbox so some of the bearing is 100% not that happy... It goes away once you push clutch so it is 100% gearbox. Just if you know...what that bearing could be? It sounding like "spun bearing" but it is louder.
    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
×
×
  • Create New...