Jump to content
SAU Community

Recommended Posts

Hows your intake piping? Are you still running stock?

Having in the stock AFM position would mean, if the BOV was shut/venting out, it'd create the almost stalling kind of effect right // "the rich pulse behaviour" due to MAF thinking air is flowing ? But this would be better than having the bov in the stock position + MAF on/just before cross over piping right?

7 hours ago, Wazmond said:

Hows your intake piping? Are you still running stock?
 

Not stock. All remade. Mostly looks stock because the pipes run to and from the standard holes in the inner guard to get to the return flow FMIC.

7 hours ago, Wazmond said:

Having in the stock AFM position would mean, if the BOV was shut/venting out, it'd create the almost stalling kind of effect right // "the rich pulse behaviour" due to MAF thinking air is flowing ? But this would be better than having the bov in the stock position + MAF on/just before cross over piping right?

I'm not sure which question you're trying to ask, because it seems like "stock position" vs "stock position".

Apologies, while id like to put the MAF as close to the TB and relocate the recirc, this may be too much work.
Will most likely end up just putting it on the original AFM spot ( onto/next to the airbox ). 
Was going through nistune, found a pretty nifty doc on this. Nistune MAF Notes.

Also, i was looking through the bay, and there seems to be a tube/line connected from the A/C to the intercooler piping ( Between the smic and the recirc), what does this do as the crossover fmic piping doesnt have any connection? plumbing? not sure what you call it but the nipple thing ahah. 

Also, been reading up more about crossover fmic in regards to the legality of having the hole drilled for the piping, this would most likely need to be engineered right?

34 minutes ago, Wazmond said:

Also, been reading up more about crossover fmic in regards to the legality of having the hole drilled for the piping, this would most likely need to be engineered right?

If you are genuinely considering trying to get this engineered, I would strongly advise finding the engineer that is happy to sign that off first before you put the hole in your car. 

I've seen cars get defected for this and not be able to be put back on the road as no engineer they spoke to was happy to sign if off.  

21 hours ago, Murray_Calavera said:

If you are genuinely considering trying to get this engineered, I would strongly advise finding the engineer that is happy to sign that off first before you put the hole in your car. 

I've seen cars get defected for this and not be able to be put back on the road as no engineer they spoke to was happy to sign if off.  

Depending where the whole gets drilled, and what country/state you're talking about, quite likely not.

 

Under ole vehicle mod rules in NSW, VSI06 allowed for drilling of holes in "non structural" areas. So you could drill a hole through the inner guard, and not need engineering. You couldn't drill over seams, and it was advised to add extra reinforcing around the hole, as well as something to protect from sharp edges.

 

Again, it's all about finding the documentation for where the mod is to be done, AND then being able to explain the situation, with the documentation as to why you don't need engineering, with a positive attitude, to any one of the likes eg, police, vehicle inspector, etc.

Meanwhile, 20+ years ago, I pulled out the 105mm hole saw and went straight down through the inner guard in front of the airbox to get my stormwater pipe cold air intake in. Right behind the two stock holes for the intercooler pipes. Those have no reinforcement (apart from a couple of robust pieces of steel pipe through them!).

I feel that the Australian vehicle standards crews put way too much emphasis on "maintaining the crash performance" of cars and not enough consideration of "any crash is a new and wonderful experiment with a random selection of parameters and you will never be able to tell if an extra 80mm hole through some sheet metal caused a significant difference...but if you close your eyes and squint at the whole structure, engage your engineering brain and have a good think about it, you'd have to expect that it would do jack all."

  • Like 1

lol thanks for the pics but some arrows might have helped for context.

image.png

If you mean the bit I've badly traced in red, that is a PITA vacuum signal for the power steering pump, only R34 GTT was "lucky" enough to get it. Yes you will need a nipple of the same size somewhere in the intake between the air filter and the throttle or the power steering idle up will not work correctly

  • 1 month later...
  • 2 months later...

So the original radiator is leaking now. Looking at getting a fully aluminium one next.
Am I correct in saying that the Series 2 Auto Stageas have a separate trans cooler from factory (located in between the rad and intercooler in my previous post/message).
 

Currently looking at Fenix $460, Blitz $700, GReddy $800, and KoyoRad $740.
What are everyones thought on Fenix ( ive read a few comments saying theyre cheap Chinese rebrands etc and how their build quality is... well.. chinese...)  compared to the others? Worth the extra couple hundies?

All the schemas I can see, indicate your typical setup of ATF 'cooler' (read: heat exchanger) in the bottom radiator tank..ie;

https://nissan.epc-data.com/stagea/wgnc34/5413-rb25det/engine/214/

...but I can prattle on a bit here. These trannies have a thermistor in the sump ~ the TCU reads this and 1. bumps the line pressure up when the ATF is 'cold' and 2. prevents the TC lockup clutch from operating, until the ATF comes up to minimum operating temp (keeps the ATF 'churning' through the TC so it heats up quicker) -- trigger point is around 55C. In these conditions, the engine coolant temperature rises faster than the ATF temperature, and also helps heat the ATF up, which is why it's best to think of the in radiator tank setup as a heat exchanger ; the heat can flow in both directions...

...with these trannies, the 'hot' ATF comes out the front banjo bolt, flows through the cooler/heat exchanger, and returns to the box  via the rear banjo bolt. This gets a mention, due to the wildly different opinions wrt running auto trans fluid coolers ~ do you bypass the in radiator tank altogether, or put the cooler inline with the in radiator tank system...and then, do you put the additional cooler before of after the in radiator tank system?...

....fact is the nominal engine operating temp (roughly 75C), happens to be the ideal temperature for the ATF used in these trannies as well (no surprises there), so for the in radiator tank system to actually 'cool' the ATF, the ATF temp has to be hotter than that...lets say 100C -- you've got 25C of 'excess' heat, (slowly) pumping into the 75C coolant. This part of the equation changes drastically, when you've got 100C ATF flowing through an air cooled radiator ; you can move a lot more excess heat, faster ~ it is possible to cool the ATF 'too much' as it were...(climate matters a lot)...

...in an 'ideal' setup, what you're really trying to control here, is flash heating of the ATF, primarily produced by the TC interface. In a perfect world, wrt auto trans oil cooling, you want a dedicated trans cooler with builtin thermostatic valving - they exist. These should be run inline and before the in radiator tank system ~ when 'cold' the valving bypasses the fin stack, allowing the ATF to flow direct to the in radiator tank heat exchanger, so it works 'as intended' with helping heat the ATF up. When 'hot' (iirc it was 50C threshold), the valving shuts forcing the ATF through the cooler fin stack, and onto the in radiator tank heat exchanger...and you sort of think of it as a 'thermal conditioner' of sorts...ie; if you did cool your ATF down to 65C, the coolant will add a little heat, otherwise it works as intended...

...the 'hot' ATF coming from the front bango bolt, is instantiated from the TC when in use, so all/any flash heated oil, flows to the fluid-to-air cooler first, and because of the greater heat differential, you can get rid of this heat fast. Just how big (BTU/h) this cooler needs to be to effectively dissipate this TC flash heat, is the charm...too many variables to discuss here, but I just wanted to point out the nitty-gritty of automatic trans fluid coolers ~ they're a different beastie to what most ppl think of when considering an 'oil cooler'...

/3.5cents 

 

  • Thanks 1

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • So, I started this repair and got as far as "fixing" the holes with some fibreglass. God all those years working on boats came back quickly. I decided I'd reach out to some rust guys just to see what they would say about it. I came across a guy about 40 mins away and went to see him. He said the windscreen needs to come out, that there might be some more bits around the windscreen and he'd quote them at the time. But his quote was $300 to remove and replace windscreen and $3k for the damage he can see. He said he could respray the roof for $1200 and the bonnet for another $800 (somebody has previously rattle canned it, its horrendous). This is $5300 + any small additional bits. It's a lot, I get that and the name of one of my fave youtube channels 'Not Economically Viable' comes to mind.  I'm not being financially rational, but I've taken him up on the quote. He's opening a new shop in November with more room, so we're waiting for that. I'll leave the currently missing headliner out until then. I'm looking forward to it being fixed and having the paint looking nice again (lots of clear coat issues on the roof too). / flame suit on.
    • Oh and some up-and-comings; New rear drivers wheel bearing. I'll do that this weekend while the diff is out. The car is already up and the d/c axles and missing exhaust will help with space. This is the last bearing for me to do and I've been dragging my feet on it. I also have some new EBC blue stuff pads for the car and some new brake fluid. I haven't ever flushed the fluid in this car and looking forward to it. I have 600 degree fluid to put in. Not exactly "race fluid" but better than the typical stuff I have been using.
    • A proper clutch/plate type mechanical diff with quite a lot of pre-load and high locking % is better for drifting. Much more consistent in its behaviour. A helical can be annoyingly vague and inconsistent in how it responds under the sorts of abuse found in drifting.
    • Some updates here. I pulled the entire interior out, minus some trim to respray the seats with Colourlock dye. It turned out really nice though I accidentally let the dog in the car after and she scratched up the front seat.  This is what it looked like before, the colour was just washing out everywhere but thankfully the leather was in good nic. Then after the respray   And after the bloody dog jumped in The headliner is out waiting to be retrimmed, but it will stay out now until Nov - see why below. I replaced the stereo/headunit with a period-styled Android headunit. I have no after pics, but I'll get some. This is because of the missing pixels. I tried to fix this twice with replacement ribbon cables but couldn't. Also the bluetooth interface I'd bought for this was crap. Then there's the rusty roof. Pics and info in this other thread. I have decided to get this repaired professionally, but I'll update that thread. This is why the headliner will stay out for now. I'll be getting the roof and bonnet resprayed at the same time the rust is fixed. I also had an interesting issue with my drivers door lock.  For a small period I was having issues getting any 12v power to the car - I mean *any*. It would have no dash lights, nothing. It happened while I was at the shops and I couldn't get in the car. So, we had 2 problems. The most pressing here is that I was locked out. I have only a single physical key hole on the car, the drivers door and no amount of turning would unlock the car. Surely it doesn't need power for this? The second issue is why am I losing all power periodically, The battery isn't dead, its almost like the battery isn't even there. Two issues that were surprisingly easy to fix. You fellow BMW over-engineering lovers will appreciate this. The lock in the door has 5 states; mechanical lock, electric lock, neutral, electric unlock, mechanical unlock achieved at -90 degrees, -45 degrees, 0 degrees, 45 degrees and 90 degrees. Although, the unlock is towards the front of the car, so opposite for LHD countries. Sticking the key in and turning 45 left or right is what is used 99% of the time. It activates the central locking etc. 90 degrees is for dead battery access and, obvs, only un/locks the one door. But because the mechanical lock is never used and is 27 years old, it seizes up. I was totally unable to turn the key far enough to get to the mechanical unlock (At the time of locking myself out, I didn't even know this was a thing). I eventually did it with some vicegrips and teflon spray.  I made a quick vid for other E39 peeps.   The battery issue is totally new to me also - It wasn't making sufficient contact between the post and the terminal. The terminal was bolted on tight, but the car wouldn't have power. After checking the battery with my multimeter I accidentally contacted the terminal and the battery post and the car got power. The battery was only a few years old and in good condition. I cleaned the post and the terminal with a wire brush, bolted it back on tight and never had the issue again. I'm still surprised that despite having solid contact it didn't work. Also, the car was getting Warragamba sized pools of water in the back when it rained. My initial concern was another rust problem. But when I went out on Weds while it was raining and while I had no headliner in I could see a steady stream of water coming through the roof mounted aerial. As this aerial is for the (now removed) car phone I pulled it out and whacked a blanking grommet in the hole. It seems fine now. I'm thinking I might get the hole permanently filled when the rust is fixed. Moving forward and things in progress; The tailgate needs some attention. I have taken all the trim off to clean it all and address some small rust spots. I have partially done all of this but I'll finish it up hopefully this weekend. As all the trim are now entirely devoid of trim clips I have bought a heap of strong velcro and I'm hoping it does a good enough job as any of this trim in good condition is super expensive and usually in Europe as we dont have many of the wagons here. Suspension and brakes!!! This is exciting. In the front; New control arms New sway bar links New lower Eibach springs (the only modification I'm planning on this car) M Sport shocks (these came with the car and will replace the longer shocks in the car) New top mounts Used 540i calipers (stock brakes suck!) New 540i disks and pads (22x296 mm for 528 and 30x334 mm for 540i) New front wheel bearings (thank all that is holy for bolt on bearings!) Annnnd in the back; New control arms New sway bar links Adjustable air suspension arms (fool the car into what the current height is so the self levelling suspension can match the new front ride height) New ball joints I'll also be doing a brake fluid flush while I'm in there. I'm planning on switching the car over to the 16's that came with it so I can clean up and respray the M Sport 17's. They've lost a lot of colour over the years and have some gutter rash. None of this will start until the E90 is back.
    • You mean you will regret it for drifting duties? I don't quite follow.
×
×
  • Create New...