Jump to content
SAU Community

Recommended Posts

  • Replies 286
  • Created
  • Last Reply

Top Posters In This Topic

  • 2 weeks later...

Haha, he means READ, not REED.. so to speak :P

A quick one - The rb26 head bolts are thicker as well as being a different thread to the rb30 head bolts arn't they?

I noticed a post from shanef from quite some time ago detailing how he used rb25 ARP head studs to bolt on an rb26 head to avoid having to getting a block machined... does the extra 1mm difference in stud thickness matter that much in the positioning of the head, or do the two dowels do a good enough job?

It should work fine, but isnt ideal engineering practice.

The bolts/studs shouldnt be aligning the head at all. All holes have some clearance, which means movement...even if tiny. The dowels will align it all fine, then you are only relying on the bolts/studs tensile strength to hold it all down.

By all rights, you would have more clamping force and strength, by opting for the 12mm bolts/studs which is always cool....unless your budget doesnt allow for it.

Said rb25 arp headstuds went into a ~900hp engine so if they are not upto the task we'll soon find out.

I asked both jhh and chilton engingeering about whether we needed extra dowels/collars to support the head and both said the factory fitted locating dowels will be fine.

Heres another way to think about it. Any extra meat left in the block is only going to make it stronger.

60 thou oversize....that is alot. maybe if it were a rd28. I havent seen anyone do that yet, on here anyway. Nor know of anyone whose gone that far over. No doubt it would be custom pistons. I dont think many places would stock pistons that big....shit, sometimes we have trouble finding 40 thou oversize.

If your not intending on big power, perhaps you can do it, and let everyone know how it goes?

  • 1 month later...

Bringing up the sticky :blink:

Havent recieved my block yet so i dont know how much it will be bored but do you reckon i should go with the 86.5mm instead of the 87mm pistons if possible? Dont know how good the RB30 handles bore and 2 of my mates cars have had cracks in the cylinders due to to much bore/to thin walls, this was on toyota's though... :blush:

It should work fine, but isnt ideal engineering practice.

The bolts/studs shouldnt be aligning the head at all. All holes have some clearance, which means movement...even if tiny. The dowels will align it all fine, then you are only relying on the bolts/studs tensile strength to hold it all down.

By all rights, you would have more clamping force and strength, by opting for the 12mm bolts/studs which is always cool....unless your budget doesnt allow for it.

Actually in the case of the RB30 block it's wiser to maintain the original tensioner size. The block is not quite thick enough around the holes to allow for rb26 bolts imo. Which has been backed up by quite a few engine builders who stay with the 25 standard size (including RIPS).

The clamping force provided with aftermarket studs + nuts is superior to that of nissans bolts.Generally if you look at aftermarket 25 studs and 26 studs they have the same tensile strength anyway because they both have the same minimum thickness. No advantage in using 26 tensioners unless you could only use nissans bolts.

studs and nuts are superior to bolts in an application such as this. With a shaft and a nut the threads under tension stays constant throughout tightening but with a Bolt the further it is screwed in the larger the thread contact area which is more friction and more torque required to get the same clamping force. Hence why it is possible to provide greater clamping force with less torque using a shaft and a nut. The lower the thread friction the more accurately a tightener can be tensioned. That is the reason torque wrenches are not always the bees knees, preparation to the manufactures steps is key.

In a production assembly it is cheaper and more efficient to utilize a bolt however... NISSAN you...

Edited by GT-RZ
  • 2 weeks later...

Damn me too..........

Actually, bolts are stronger than studs+nuts in terms of clamping force as the nut is sacraficial to the stud thread. There is no such failsafe in a bolt. The reason for studs being superior in this type of application is because when a stud is torqued there is a state of compression left in the blocks thread region. Next when you clamp the head on with nuts, it exerts an opposite state of tension to the area. This tension cancels out this compression and eleminates the majority of residual stresses in your block.

Yes bolt torques will differ from nut torques because of the increased contact area but that is how it was originally calculated/measured from factory. Needless to say, applying that same torque to a nut could be dangerous (even with a different type of factory lubricant). Also there are two types of friction working, static and dynamic. Static friction is much higher than dynamic hence you should never torque a bolt from stop i.e. should be torqued from a 'running' continous movement. Using torque wrenches correctly is quite complicated because of the different types but I wont get started here.

With regards to the different head stud sizes (M10x1.5p and M12x1.75p) then theres deffinately a difference in tensile stress areas (58.0 and 84.3mm^2 respectively) and hence overall strength (M12x1.75p 45% stronger than M10x1.5p). Although a/market bolts are genuinely treated to higher grades, I would say a/market 25 nuts (or bolts) would definately be superior to the original 26 bolts. As above the dowels do the locating. That said, you have to machine at the top of M12 tolerances to get the correct clearances from an M10 thread (M10 on top and M12 on bottom tolerance = problems).

hmm so a/m 25 studs for 26 head application most likely ok in my opinion and studs are good in general when doing block modifications

Edited by Jmaac
can anyone help, my freind is building a rb30/26, but wants to keep the standard pistons, will the valves clear.

Yeh man they will. But what we do at work with standard pistons Is put the head gasket on the head and scribe around the ring of the gasket on the head and then grind the head out. much safer for standard pistons. If you want pics or more info let me know

Damn me too..........

Actually, bolts are stronger than studs+nuts in terms of clamping force as the nut is sacraficial to the stud thread. There is no such failsafe in a bolt. The reason for studs being superior in this type of application is because when a stud is torqued there is a state of compression left in the blocks thread region. Next when you clamp the head on with nuts, it exerts an opposite state of tension to the area. This tension cancels out this compression and eleminates the majority of residual stresses in your block.

Yes bolt torques will differ from nut torques because of the increased contact area but that is how it was originally calculated/measured from factory. Needless to say, applying that same torque to a nut could be dangerous (even with a different type of factory lubricant). Also there are two types of friction working, static and dynamic. Static friction is much higher than dynamic hence you should never torque a bolt from stop i.e. should be torqued from a 'running' continous movement. Using torque wrenches correctly is quite complicated because of the different types but I wont get started here.

With regards to the different head stud sizes (M10x1.5p and M12x1.75p) then theres deffinately a difference in tensile stress areas (58.0 and 84.3mm^2 respectively) and hence overall strength (M12x1.75p 45% stronger than M10x1.5p). Although a/market bolts are genuinely treated to higher grades, I would say a/market 25 nuts (or bolts) would definately be superior to the original 26 bolts. As above the dowels do the locating. That said, you have to machine at the top of M12 tolerances to get the correct clearances from an M10 thread (M10 on top and M12 on bottom tolerance = problems).

hmm so a/m 25 studs for 26 head application most likely ok in my opinion and studs are good in general when doing block modifications

I'm quite confused by reading your post, no! amused... Unsure if you grasped what i was saying or if you were too busy looking up google for random jibberish. Without going in to much detail i'll leave so,e brief points.

First of all your opening statement is absolute rubbush. You are forgetting allot of key factors here (or maybe you never new them in the first place?) First of all a NUT is NEVER manufactured with a lower thread shear tolerance than the shaft it will be attached too. The stud/shaft always defines the UTS. (especially when we are talking about quality fastners here not some chinese plastic metal) Furthermore a bolt is always going to be inferior to a stud and nut simply due to the way it must be tightened, As i'm sure your aware off the UTS of torsional shear stress is far lower than that of the UTS in axial tension, by tighning a bolt (especialy a long head bolt) you are multiplying the torsional stress on the bolts shaft in to a far greater stress than a stud will ever get to see, the nut takes care off all that torsional force and translates it in to clamping force.

I could go on but really i'v ranted this stuff on here before somewhere. As for the complicated torque wrenches, have you ever used one? Not too complicated really? What is important is how you use them, tighten then loosen untill you get minimum friction and if your a smart as you can measure the stretch on the bolts each time and tighten your bolts up the perfect way. Less torque required with greater clamping force the better, bolts are crap. period.

PS: i believe ARP head studs are around the 1400mpa mark so i rekon that' splenty of strength hey?!! forget 26 head studs.

They are rated almost identicallly to the 25 ones.

Ive seen plenty of builds with m12 studs, arp and other used in rb30's with no dramas....i think the difference is probabaly negligible in real world terms.

Ive never heard of any problems with head stud holes cracking out or areas around them cracking due to the extra 1mm increase in diameter or extra clamping force.

I think you will find most of the time if people are using only m11 studs or bolts its simply because their horsepower goals dont require the upgrade. And going by what some people have achieved, it seems unless your really going for major power, like 1500+ you can prob stick to 11mm studs.

No need to get your knickers in a knot, just trying to help. Yeah I’m laughing too, some brief answers for your brief ‘points’.

Firstly it depends on the manufacturer and to what extent. Nuts are commonly manufactured to different tolerances than the stud/bolt/shaft ‘it will be attached to’ it’s called class of fit. In general a nut with strip before destroying the stud, this is not coincidence but a design feature. In fact, a nut is usually softer than a bolt to allow slight yielding of the top threads and thus distribute the load more uniformly among the threads in contact. I believe what you are trying to say here is that the length of nut engagement is balanced between bolt tensile and thread stripping strengths, and yes I agree they are made like that in special instances. That would allow you to say the stud/shaft defines the UTS (which is actually a property of the material). When designing around fasteners the 0.2 offset yield is used over the UTS anyway. Without working for ARP I wouldn’t know what their design requirements specify, but you seem to know.

Yes I understand torsional strength is lower than axial strength (in most isotropic materials by a factor of 1/SQRT(3)) and yes in most instances a nut will convert torque into thrust (or clamping force) more efficiently because of the reduction in thread contact area (less energy absorbed by friction i.e. heat, sound etc.) …not simply “by the way it must be tightened”. You have completely forgotten about the nut failing in traverse shear. This is what stud/nut or bolt/nut interactions are based on (as above). I suggest you read some proper literature yourself. Your increased clamping force at the same torque has just brought your nut closer to failing in traverse shear than the much higher axial stress you anticipated it failing at earlier. Don’t worry about torsional shear or axial stress, your going to strip the thread from the nut! (or destroy both equally in your opinion, two birds one stone? economical).

Yes I have used many… both really small and really fkn BIG. Most people don’t know wrench accuracies change with graduations in scale (eg. two parallel scales with a shift each graduation) and unless you can fully distribute your hand across the whole handle or use one finger directly in the middle at perfect right angles your result will be off. The variance is quite surprising.

Remember 1400MPa is strength per unit area. What are the original ones rated at?

I’m just trying to help people by providing an understanding in plain engrish of the benefits of using studs in an engine block. That is, after a stud is installed the block is effectively in a state of stress i.e. there are invisible forces pulling or holding these studs into the engine block. When the head is torqued back into place, these studs are effectively pulled back up out of the block, basically back to its ‘original position’. Even though the head is torqued nice and evenly on, the sum of all force at the block/thread face is next to ZERO.

No need to get your knickers in a knot, just trying to help. Yeah I'm laughing too, some brief answers for your brief 'points'.

Firstly it depends on the manufacturer and to what extent. Nuts are commonly manufactured to different tolerances than the stud/bolt/shaft 'it will be attached to' it's called class of fit. In general a nut with strip before destroying the stud, this is not coincidence but a design feature. In fact, a nut is usually softer than a bolt to allow slight yielding of the top threads and thus distribute the load more uniformly among the threads in contact. I believe what you are trying to say here is that the length of nut engagement is balanced between bolt tensile and thread stripping strengths, and yes I agree they are made like that in special instances. That would allow you to say the stud/shaft defines the UTS (which is actually a property of the material). When designing around fasteners the 0.2 offset yield is used over the UTS anyway. Without working for ARP I wouldn't know what their design requirements specify, but you seem to know.

Yes I understand torsional strength is lower than axial strength (in most isotropic materials by a factor of 1/SQRT(3)) and yes in most instances a nut will convert torque into thrust (or clamping force) more efficiently because of the reduction in thread contact area (less energy absorbed by friction i.e. heat, sound etc.) …not simply "by the way it must be tightened". You have completely forgotten about the nut failing in traverse shear. This is what stud/nut or bolt/nut interactions are based on (as above). I suggest you read some proper literature yourself. Your increased clamping force at the same torque has just brought your nut closer to failing in traverse shear than the much higher axial stress you anticipated it failing at earlier. Don't worry about torsional shear or axial stress, your going to strip the thread from the nut! (or destroy both equally in your opinion, two birds one stone? economical).

Yes I have used many… both really small and really fkn BIG. Most people don't know wrench accuracies change with graduations in scale (eg. two parallel scales with a shift each graduation) and unless you can fully distribute your hand across the whole handle or use one finger directly in the middle at perfect right angles your result will be off. The variance is quite surprising.

Remember 1400MPa is strength per unit area. What are the original ones rated at?

I'm just trying to help people by providing an understanding in plain engrish of the benefits of using studs in an engine block. That is, after a stud is installed the block is effectively in a state of stress i.e. there are invisible forces pulling or holding these studs into the engine block. When the head is torqued back into place, these studs are effectively pulled back up out of the block, basically back to its 'original position'. Even though the head is torqued nice and evenly on, the sum of all force at the block/thread face is next to ZERO.

Without starting another page i would like to let you know if you are shearing threads from the bolt then you are only doing so when you are turning the nut on the shaft, over tensioning.

I can guarantee if you were to place a nut on the thread of the head stud and somehow attach this piece in to a tension breaker the shaft will 'neck' and separate before the threads on the nut give away. Again you have missed the point (this is not for idiots with keep on tigtning something untill the threads let go)

As for the class of fit that depends on the thread and material. Anything rated over 800mpa generally will be provided with a lower rated nut and yes you are correct in saying this is due to the yield strength in the nut providing the grip.

Obviously Generally the higher the UTS of steel the higher the start of plastic deformation in regards to the UTS, which is why there is such a rigorus tightning procedure with fastners like head studs (very high MPA). Obviously tightning a tensioner up correctly is simply a method of reaching a level around the maximum level of the materials elastic limit nibbling the plastic limit (providing the maximum amount of spring in the steel) which can be a hard task when dealing with hard materials as the boundary between elastic and plastic deformation are extremely close, too much tension and you permanently elongate the fastner too much rendering it useless and too little and you run the risk of the working load providing more force than it was tensioned with, creating working stress and potenial premature failure.

As for 1400Mpa then that is what it is... 1400mpa or 1400 newtons per mm in laymans terms. That is all you need to know along with the area under tension to calculate the maximum load. The factory tensioners will not be rated at such a level, bolts in general due to the way they are used have much smaller loading maximums like i explained before. Again a nut does not determine the UTS, the shaft does.

I found this on ARP's website:

Engaged Thread

An additional factor must be taken into account in defining the bolt configuration: the length of engaged thread. If too few threads are engaged, the threads will shear at loads that are lower than the strength of the bolt. As a practical matter, the thread length is always selected so that the thread shear strength is -significantly greater than the bolt tension strength.

This problem is especially important in bolts used in aluminum rods because of the fact that the shear strength of aluminum is much lower than the shear strength of steel.

right guys nearing the end of my build,, question is has anyone used hks2530 on there rb3026 build, plus what power can rb30 rods take,

not for my engine as i have forged, but a freind is doing a cheap build with totaly standard bottom end.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I had 3 counts over the last couple of weeks once where i got stranded at a jdm paint yard booking in some work. 2nd time was moving the car into the drive way for the inspection and the 3rd was during the inspection for the co2 leak test. Fix: 1st, car off for a hour and half disconnected battery 10mins 4th try car started 2nd, 5th try started 3rd, countless time starting disconnected battery dude was under the hood listening to the starting sequence fuel pump ect.   
    • This. As for your options - I suggest remote mounting the Nissan sensor further away on a length of steel tube. That tube to have a loop in it to handle vibration, etc etc. You will need to either put a tee and a bleed fitting near the sensor, or crack the fitting at the sensor to bleed it full of oil when you first set it up, otherwise you won't get the line filled. But this is a small problem. Just needs enough access to get it done.
    • The time is always correct. Only the date is wrong. It currently thinks it is January 19. Tomorrow it will say it is January 20. The date and time are ( should be ! ) retrieved from the GPS navigation system.
    • Buy yourself a set of easy outs. See if they will get a good bite in and unthread it.   Very very lucky the whole sender didn't let go while on the track and cost you a motor!
    • Well GTSBoy, prepare yourself further. I did a track day with 1/2 a day prep on Friday, inpromptu. The good news is that I got home, and didn't drive the car into a wall. Everything seemed mostly okay. The car was even a little faster than it was last time. I also got to get some good datalog data too. I also noticed a tiny bit of knock which was (luckily?) recorded. All I know is the knock sensors got recalibrated.... and are notorious for false knock. So I don't know if they are too sensitive, not sensitive enough... or some other third option. But I reduced timing anyway. It wasn't every pull through the session either. Think along the lines of -1 degree of timing for say, three instances while at the top of 4th in a 20 minute all-hot-lap session. Unfortunately at the end of session 2... I noticed a little oil. I borrowed some jack stands and a jack and took a look under there, but as is often the case, messing around with it kinda half cleaned it up, it was not conclusive where it was coming from. I decided to give it another go and see how it was. The amount of oil was maybe one/two small drops. I did another 20 minute session and car went well, and I was just starting to get into it and not be terrified of driving on track. I pulled over and checked in the pits and saw this: This is where I called it, packed up and went home as I live ~20 min from the track with a VERY VERY CLOSE EYE on Oil Pressure on the way home. The volume wasn't much but you never know. I checked it today when I had my own space/tools/time to find out what was going on, wanted to clean it up, run the car and see if any of the fittings from around the oil filter were causing it. I have like.. 5 fittings there, so I suspected one was (hopefully?) the culprit. It became immediately apparent as soon as I looked around more closely. 795d266d-a034-4b8c-89c9-d83860f5d00a.mp4       This is the R34 GTT oil sender connected via an adapter to an oil cooler block I have installed which runs AN lines to my cooler (and back). There's also an oil temp sensor on top.  Just after that video, I attempted to unthread the sensor to see if it's loose/worn and it disintegrated in my hand. So yes. I am glad I noticed that oil because it would appear that complete and utter catastrophic engine failure was about 1 second of engine runtime away. I did try to drill the fitting out, and only succeeded in drilling the middle hole much larger and now there's a... smooth hole in there with what looks like a damn sleeve still incredibly tight in there. Not really sure how to proceed from here. My options: 1) Find someone who can remove the stuck fitting, and use a steel adapter so it won't fatigue? (Female BSPT for the R34 sender to 1/8NPT male - HARD to find). IF it isn't possible to remove - Buy a new block ($320) and have someone tap a new 1/8NPT in the top of it ($????) and hope the steel adapter works better. 2) Buy a new block and give up on the OEM pressure sender for the dash entirely, and use the supplied 1/8 NPT for the oil temp sender. Having the oil pressure read 0 in the dash with the warning lamp will give me a lot of anxiety driving around. I do have the actual GM sensor/sender working, but it needs OBD2 as a gauge. If I'm datalogging I don't actually have a readout of what the gauge is currently displaying. 3) Other? Find a new location for the OEM sender? Though I don't know of anywhere that will work. I also don't know if a steel adapter is actually functionally smart here. It's clearly leveraged itself through vibration of the motor and snapped in half. This doesn't seem like a setup a smart person would replicate given the weight of the OEM sender. Still pretty happy being lucky for once and seeing this at the absolute last moment before bye bye motor in a big way, even if an adapter is apparently 6 weeks+ delivery and I have no way to free the current stuck/potentially destroyed threads in the current oil block.
×
×
  • Create New...