Jump to content
SAU Community

Recommended Posts

Just now, SimonR32 said:

Once again, how is that different to the oil/mist in the cam covers that drains back to the sump?

seeing as most engines only breathe heavy under hard load or high rpm ,i would think the majority of it is blown into the catch can.

either way just posting my thoughts on why i dont think it should go back to the sump. what would be the benefit of it going back to the sump?

1 minute ago, SimonR32 said:

The question is, is that ethanol affecting the oil or water condensation? and is that straight after driving the car or because you left warm oil sit in the catch can? 

Also nice and dandy for straight line stuff, that's never been the issue... Trying hammering around a Racetrack and you will see why it's better to have oil from the catch can drain back into the sump rather than no oil in the sump.

I'm also going to take a bet that my car not only survives Racewars and Powercruise weekends (and years and years of them) but also is more than happy to lap tracks running 2 bar with no issues

no way thats water condensation effecting the oil like that, the water and fuel can generally be seen sitting ontop of the oil when drained. 

fair call, not sure how the time attack fellas do it, but even if you have windage trays, baffles, correct breather setups and a correctly vented sump and all the rest and you still manage to EMPTY a sump? theres a bigger issue to your setup than draining a catch can back to the pan.. IMO

obviously everyone has their own opinions, i am showing people why i wouldnt do it, they can chose for themselves.

 

 

6 hours ago, ScreamerNewbie said:

no way thats water condensation effecting the oil like that, the water and fuel can generally be seen sitting ontop of the oil when drained. 

fair call, not sure how the time attack fellas do it, but even if you have windage trays, baffles, correct breather setups and a correctly vented sump and all the rest and you still manage to EMPTY a sump? theres a bigger issue to your setup than draining a catch can back to the pan.. IMO

obviously everyone has their own opinions, i am showing people why i wouldnt do it, they can chose for themselves.

 

 

You don't empty the sump.  But you can easily put enough in a catch can that firing over kerbs splashes oil everywhere (out the breather) and makes a mess.  So it works better with an empty catch can.

The oil is invariably stinking hot anyway.  Hot enough to boil off any ethanol (if that is what you are running) and water.  Also to burn the crap out of your hands when you spill it after touching the stinking hot engine/radiator hoses etc etc. Sure you can wait until it cools but then you lose half your track time.

Anyway point is if you are thinking of changing oil do it AFTER the track day.  Because what you are seeing is condensation.

21 hours ago, ScreamerNewbie said:

no way thats water condensation effecting the oil like that, the water and fuel can generally be seen sitting ontop of the oil when drained. 

 

14 hours ago, djr81 said:

Anyway point is if you are thinking of changing oil do it AFTER the track day.  Because what you are seeing is condensation.

:thumbsup:

Also good point Richard makes about the water/ethanol boiling, I always drive my car to the track before thrashing so anything that could be potentially hazardous to the engines health with likely be gone by the time any thrashing occurs 

I'm going to answer my own questions in here, just for future reference, IF someone uses the search button.

 

 

Does anything speak against this setup:

-Hose from right cam cover to catch tank

-Stock Hose from left to right cam cover

-Properly baffled Catch tank vent to atmosphere

And here comes the part I didn't find anything in this thread:

-Hose from AN10/12 fiitting from sump (above oil level on intake side) to existing left cam cover connecting point (which normally goes to intake before turbo).

Should do the trick same as going directly to the catch tank, am I right?

So I can use the existing port on the cam cover, don't need to modify my catch tank and it is a really high point (maybe less blow by than going directly to catch tank)

 

People go from oil cap to sup to ventilate the head

having the vent in the low side of the head( left side to drivers side sump) to the sump seem stupid but give it a shot tell us your results

 

Haven't driven the car that much this year, but seems to work fine.

Has Tomei orifice, Tomei pump, breather from right cam cover to catch tank. Sump breather from right side of sump to left cam cover.

Baffled and enlarged sump. Overfilled to top of "H" mark on dipstick

No oil pressure drops anymore when accerlerating hard.

 

 

How much oil pressure is to much?

My RB28 has Tomei pump, 1.5mm head restrictor, 0.8mm turbo banjo bolts, 0,045mm main bearing clearance and 0,050mm conrod bearing clearence.

Tomei oil pump is at factory setting (max pressure) at the moment.

 

My Greddy digital gauge showing up to 7.5 bar on hot engine at 5500rpm with the 15w40 running in oil.

Will go back to 10w50 soon.

 

 

Seems fine at cold idle (6 bar) and hot idle (3 bar) and normal driving with hot engine at 3500rpm (6bar)

 

Should I go down with the pressure?

 

I adjusted the pressure to stage 3/5 (single spring and two shims).

Max pressure is around 6.8bar now at 6500rpm. Still 3bar hot idle.

Cold idle is 4.8bar.

3500rpm is around 5bar now.

 

 

Everything with Fuchs Titan pro s 10w50

 

Really happy with the oil system now.

 

  • 1 month later...

Or any info as in if it matters if u plug the middle or back oil feed in the block because I blocked the back one and alot of people are telling me it won't work that way so id like to know if I have to pull the motor out again to fix my misstake. Any info would be greatly appreciated

  • 1 month later...
1 hour ago, GTSBoy said:

What's your point/question?  The one in the bag clearly looks like it's bigger than either of the 2 in the block.  This is why god invented round feeler gauges.

https://physics.stackexchange.com/questions/224523/why-does-the-pressure-of-fluid-increase-when-the-diameter-of-the-pipe-increases

 

If you have entrained or dissolved air bubbles in the oil supply then the marginally larger diameter will help keep the bubbles smaller and/or dissolved.  This allows the fluid to act more closely to an ideal fluid which is what the factory engineers envisioned whilst designing the engine.  See Henry's Law.

Do you seriously maintain that Nissan engineers calculated the size of the restrictors in the head oil supply to expressly keep dissolved gases in the liquid?  Really?  That's bizarre.  Show me an SAE paper where that has been proposed as a mechanism to counter this (I think non-existent) problem.

5 minutes ago, GTSBoy said:

Do you seriously maintain that Nissan engineers calculated the size of the restrictors in the head oil supply to expressly keep dissolved gases in the liquid?  Really?  That's bizarre.  Show me an SAE paper where that has been proposed as a mechanism to counter this (I think non-existent) problem.

I have examined the sump design on hundreds of different engines including numerous Datsun/Nissan engines.  It is very clear that a large effort went into the sump design of the RB26DETT.  My criticism would be the corporately dictated bulge in the rear sump floor that disrupts the flow as it does in other Nissan sumps.  The engineers have to make the best of that.

As far as SAE papers go, there are MANY that deal with air entrainment in oil supplies.  I scarcely think that Nissan engineers are ignorant of basic fluid mechanics.  SAE.org is your starting point.  SAE now provides several pages of the article for viewing prior to purchase. 

 

What's your point/question?  The one in the bag clearly looks like it's bigger than either of the 2 in the block.  This is why god invented round feeler gauges.


I thought my eye sight is poor but you're the first who kinda agree with me that the 1 in the bag is bigger. All the others mention they look the same. Mind u the 1 in the bag is from tomei so that's 1.5 mm and yes I just measured it...

I swear my engine is bone stock prior to this "rebuild" but who knows what this ecr33 was back in the days in japan... Lol

The titular page shown here is a good start for budding engineers.  The investigated engine was also the subject of two MIT theses and subsequent SAE articles.  I purposely do not give the links or further information because it is extremely important that people be trained to do research rather than be served pablum.  Suffice it to say that the MIT theses can be downloaded and read in their entirety at no charge to the investigator.  The SAE articles are not duplicates of the theses, by the way, but do draw upon the research.

 

Just to whet your intellectual curiosity, the engine was originally designed by Porsche.  You can learn a lot about engineering by comparing how Ford and Porsche treated sump design differently.

 

Good luck in your investigations.

 

SAE_reference.jpg

Edited by Kevin Johnson

Kevin you can stop being a smart Cünt. We're talking about a flow restrictor

 

The restrictor is there to restrict flow. Not keep bubbles dissolved. What do you think happens once the oil has passed through the orifice into the head galleries.

Feel free to publish an SAE paper about burn4005 being a wanker.

Edited by burn4005
  • Like 3

I suggest you read a few of the SAE papers before commenting about how and why restrictors are used for head oil supplies.

I have been subscribed to this thread for many years now.  I spent a lot of time making thousands upon thousands of posts in other forums dealing with this general topic.

I will be quiet now.

 

 

 

Edited by Kevin Johnson

Entrained air is not dissolved air.  The fraction of any entrained air that will actually dissolve into engine oil at the sorts of pressures we're talking about here is what?  1%?  2%?  So even if it was an unrealistic number like 10%, that still leaves 90% of any entrained oil staying as entrained bubbles, not dissolved into the oil and therefore not affected by any attempt to use an ever so slightly larger restrictor orifice to ever so marginally increase the static pressure in the length of the orifice to ever so slightly affect the tiny amount of air that may or may not spontaneously spring out of the oil.

Talk about finding a way to confuse the conversation.

I hereby re-inforce my earlier statement that I cannot believe that OEM engineers would choose to increase the diameter of an oil flow restrictor by 0.25mm or any similar amount just for that purpose.  I would strongly suggest that all your palaver about sump design being important for preventing air entrainment into the oil is about the sump and the oiling system overall.  Prevention being more important than the (imagined) cure.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Update 3: Hi all It's been a while. Quite a lot of things happened in the meantime, among other things the car is (almost) back together and ready to be started again. Things that I fixed or changed: Full turbo removal, fitting back the OEM turbo oil hardlines. Had to do quite a bit of research and parts shopping to get every last piece that I need and make it work with the GT2860 turbos, but it does work and is not hard to do. Proves that the previous owner(s) just did not want to. While I was there I set the preload for the wastegates to 0,9bar to hopefully make it easier for the tuner to hit the 370hp I need for the legal inspections that will follow later on. Boost can always go up if necessary. Fitted a AN10 line from the catch can to the intake hose to make the catchcan and hopefully the cam covers a slight vacuum to have less restrictive oil returns from the head and not have mud build up as harshly in the lines and catch can. Removed the entire front interior just shy of the dashboard itself to clean up some of the absolutely horrendous wiring, (hopefully) fix the bumpy tacho and put in LED bulbs while I was there. Also put in bulbs where there was none before, like the airbag one. I also used that chance to remove the LED rpm gauge on the steering column, which was also wired in absolute horror show fashion. Moved the 4in1 Prosport gauge from sitting in front of the OEM oil pressure gauge to the center console vents, I used a 3D printed vent piece to hold that gauge there. The HKB steering wheel boss was likely on incorrectly as I sometimes noticed the indicator reset being uneven for left vs. right. In the meantime also installed an airbag delete resistor, as one should. Installed Cube Speed premium short shifter. Feels pretty nice, hope it'll work great too when I actually get to drive. Also put on a fancy Dragon Ball shift knob, cause why not. My buddy was kind enough to weld the rust hole in the back, it was basically rusted through in the lowermost corner of the passenger side trunk area where the wheel arch, trunk panel and rear quarter all meet. Obviously there is still a lot of crustiness in various areas but as long as it's not rusted out I'll just treat and isolate the corrosion and pretend it's not there. Also had to put down a new ground wire for the rear subframe as the original one was BARELY there. Probably a bit controversial depending on who you ask about this... but I ended up just covering the crack in the side of the engine block, the one above the oil feed, with JB Weld. I used a generous amount and roughed up the whole area with a Dremel before, so I hope this will hold the coolant where it should be for the foreseeable future. Did a cam cover gasket job as the half moons were a bit leaky, and there too one could see the people who worked on this car before me were absolute tools. The same half moons were probably used like 3 times without even cleaning the old RTV off. Dremeled out the inside of the flange where the turbine housing mates onto the exhaust manifolds so the diameter matches, as the OEM exhaust manifolds are even narrower than the turbine housings as we all know. Even if this doesn't do much, I had them out anyways, so can't harm. Ideally one would port-match both the turbo and the manifold to the gasket size but I really didn't feel up to disassembling the turbine housings. Wrapped turbo outlet dumps in heat wrap band. Will do the frontpipe again as well as now the oil leak which promted me to tear apart half the engine in the first place is hopefully fixed. Fitted an ATI super damper to get rid of the worn old harmonic balancer. Surely one of the easiest and most worth to do mods. But torquing that ARP bolt to spec was a bitch without being able to lock the flywheel. Did some minor adjustments in the ECU tables to change some things I didn't like, like the launch control that was ALWAYS active. Treated rusty spots and surface corrosion on places I could get to and on many spots under the car, not pretty or ideal but good enough for now. Removed the N1 rear spats and the carbon surrounding for the tailpipe to put them back on with new adhesive as the old one was lifting in many spots, not pretty. Took out the passenger rear lamp housing... what do you know. Amateur work screwed me again here as they were glued in hard and removing it took a lot of force, so I broke one of the housing bolts off. And when removing the adhesive from the chassis the paint came right off too. Thankfully all the damaged area won't be visible later, but whoever did the very limited bodywork on this car needs to have their limbs chopped off piece by piece.   Quite a list if I do say so myself, but a lot of time was spent just discovering new shit that is wrong with the car and finding a solution or parts to fix it. My last problem that I now have the headache of dealing with is that the exhaust studs on the turbo outlets are M10x1.25 threaded, but the previous owner already put on regular M10 nuts so the threads are... weird. I only found this out the hard way. So now I will just try if I can in any way fit the front pipe regardless, if not I'll have to redo the studs with the turbos installed. Lesson learned for the future: Redo ALL studs you put your hands on, especially if they are old and the previous owners were inept maniacs. Thanks for reading if you did, will update when the engine runs again. Hope nothing breaks or leaks and I can do a test drive.
    • No those pads are DBA too  but they have colors too. I look at the and imo the green "street" are the best.
    • I’m not sure what happened I told them about sonic tunes free OTS tune and the next the I know .. I was booted..   To funny 
    • Yea - I mean I've seen my fuel pump which is decades old and uh, while I'm not saying this with real knowledge... but I sure get the ick at using anything in the fuel system that produced the state of that pump. Many years ago I went through multiple pumps (and strainers) before I dropped the tank to clean it out with extreme violence. I'm talking the car would do maybe 50km before coming to a halt, which resulted in me cleaning out the filter with some brake cleaner and going on my way. None of my stuff ever looked like what came out of your fuel tank. I don't think I'd be happy with it unless every single component was replaced (or at least checked/cleaned/confirmed to be clean here).
×
×
  • Create New...