Jump to content
SAU Community

Recommended Posts

Thats why its called 1KG actuator. Once boost controller removed it should stay around 10psi. You can also play with the actuator's pre-load to alter boost settings.

Thats why its called 1KG actuator. Once boost controller removed it should stay around 10psi. You can also play with the actuator's pre-load to alter boost settings.

Boost controller has been turned off. Which way do i adjust to lower boost? Not keen on 1Bar until injectors are sorted

Stao, what if any are the differences between your GT3076 with your .82 rear and the Garrett original version? I realise you use a different exhaust housing and that it's a direct fit, but does the turbo have any less potential due to the compressor housing?

Stao, what if any are the differences between your GT3076 with your .82 rear and the Garrett original version? I realise you use a different exhaust housing and that it's a direct fit, but does the turbo have any less potential due to the compressor housing?

+1 good question

Just direct vacuum straight into the actuator with no boost controller. You should see a drop in boost curve.

GT3076 is a Original Garrett Item. We use them in our turbo builts, high flows and overhauls depends on customers request. Most of our turbochargers are built in sleeve bearing setup which is some thing that is equivalent to produces similar end result.

Garrett does not have IW housings that made to suit RB25det OEM engine setup. Ours is a custom made housing which is in the same Air ratio but with OEM RB25det Bolton pattern.

stao would you be able to hiflow a 2IU to HKS GTRS or 2835 spec?

I would be interested to know if its possible also to do a hiflow with 3076 internals and a matching front housing size that would perform similarly as well... is it possible to modify the RB rear housing in a way that is as effective as the original garrett IW housing in this scenario? in a way that does not require cropping of the exhaust wheel and that does not have the exhaust wheel pertruding out the rear port of the turbo (therefore blocked by the housing)

it would be great if you could clear these up for me Stao, thanks

We can build a 2871 equivalent CHRA in a customized T3x .64 turbine housing with 6 bolt dump. Should make similar sort of power and response.

Garrett does not have IW housings that made to suit RB25det OEM engine setup. Ours is a custom made housing which is in the same Air ratio but with OEM RB25det Bolton pattern.

They actually do now: NEW!! RB Nissan Special Garrett GT3076R ball bearing turbo

Bottom of page 2:

http://horsepowerinabox.com/HPIAB2/category12_2.htm

Although, GCG do not like it and say that the standard skyline flange is too restrictive for the GT3076R and causes boost spiking etc.

This is from a Friend's 95 R33 running a ATR45 600HP turbo in .50 comp and .82 turbine internally gated using a high pressure actuator.

fully stock RB25det engine, 550cc injectors, cooler, Nistune chiped Z32 ECU , and 3inch turbo back exhaust. Tuned at 399rwHP @ 18psi.

It hits 18psi at 4800RPM. Not the most responsive turbo, But it certainly can do lot more then 300rwkws.

298rwkwrb25dets.jpg

This is from a Friend's 95 R33 running a ATR45 600HP turbo in .50 comp and .82 turbine internally gated using a high pressure actuator.

fully stock RB25det engine, 550cc injectors, cooler, Nistune chiped Z32 ECU , and 3inch turbo back exhaust. Tuned at 399rwHP @ 18psi.

It hits 18psi at 4800RPM. Not the most responsive turbo, But it certainly can do lot more then 300rwkws.

Hi,

Sorry, I know you've probably been asked this question too many times to count, but I read a few pages ago a quote from you saying something like "We can build you a turbo to hit 280rwkw with excelent street response" from an RB25. I'm very interested in this, could you detail exactly what this would entail man? I've been reading through the thread but everything seems to change so often I thought I'd just ask you to see what was current.

This sounds awesome man, I just want to work out if I need to, and where to get dump pipes, and if my tuner's happy tuning this (I see no reason why he wouldn't be =]).

Cheers,

Tim

Edit: Obviously all the supporting mod's will already be factors, I'm just interested as to the specs of the turbo. Oh, and a price, if it's ok to post it here?

Edited by That_timothy

What does the 0.82 housing look like? Is it similar to the standard nissan one? Or is it obvious its aftermarket?

Will the standard heat shield still fit on?

Edited by Harey

The ATR43G3 is a 3076 56T equivalent turbo. in .82 turbine full boost at 4300RPM. Good for about 280rwkw with highpressure actautor internally gated. We can install a GT3076BB 56T CHRA for $450 additional.

The .82 turbine housing is a custom made housing in T3x print, with a 6 bolt OEM RB25's dump pattern.

The ATR43G3 is a 3076 56T equivalent turbo. in .82 turbine full boost at 4300RPM. Good for about 280rwkw with highpressure actautor internally gated. We can install a GT3076BB 56T CHRA for $450 additional.

The .82 turbine housing is a custom made housing in T3x print, with a 6 bolt OEM RB25's dump pattern.

Is it possible to get the ATR43G3 with a .63 rear?

As I was looking at getting either a 3071 or 3076 with a .63 rear.

Yes that'd be 1250 + 150 for the ATR43G3 with .82 housing and the high pressure actuator. + 10% GST and $80 oil feeding line. which is $1600 AUD.

Same profile In .63 turbine can get full boost around 3500RPM. But you need a external gate to hold it steady.

Boost curve in .63 turbine:

http://www.digi-hardware.com/images/dynosh...3boost15psi.jpg

Same profile In .63 turbine can get full boost around 3500RPM. But you need a external gate to hold it steady.

I'm only running an RB20 so would boost control still be an issue, as .82 rear on an rb20 would be a no go.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Yup. You can get creative and make a sort of "bracket" with cable ties. Put 2 around the sender with a third passing underneath them strapped down against the sender. Then that third one is able to be passed through some hole at right angles to the orientation of the sender. Or some variation on the theme. Yes.... ummm, with caveats? I mean, the sender is BSP and you would likely have AN stuff on the hose, so yes, there would be the adapter you mention. But the block end will either be 1/8 NPT if that thread is still OK in there, or you can drill and tap it out to 1/4 BSP or NPT and use appropriate adapter there. As it stands, your mention of 1/8 BSPT male seems... wrong for the 1/8 NPT female it has to go into. The hose will be better, because even with the bush, the mass of the sender will be "hanging" off a hard threaded connection and will add some stress/strain to that. It might fail in the future. The hose eliminates almost all such risk - but adds in several more threaded connections to leak from! It really should be tapered, but it looks very long in that photo with no taper visible. If you have it in hand you should be able to see if it tapered or not. There technically is no possibility of a mechanical seal with a parallel male in a parallel female, so it is hard to believe that it is parallel male, but weirder things have happened. Maybe it's meant to seat on some surface when screwed in on the original installation? Anyway, at that thread size, parallel in parallel, with tape and goop, will seal just fine.
    • How do you propose I cable tie this: To something securely? Is it really just a case of finding a couple of holes and ziptying it there so it never goes flying or starts dangling around, more or less? Then run a 1/8 BSP Female to [hose adapter of choice?/AN?] and then the opposing fitting at the bush-into-oil-block end? being the hose-into-realistically likely a 1/8 BSPT male) Is this going to provide any real benefit over using a stainless/steel 1/4 to 1/8 BSPT reducing bush? I am making the assumption the OEM sender is BSPT not BSPP/BSP
    • I fashioned a ramp out of a couple of pieces of 140x35 lumber, to get the bumper up slightly, and then one of these is what I use
    • I wouldn't worry about dissimilar metal corrosion, should you just buy/make a steel replacement. There will be thread tape and sealant compound between the metals. The few little spots where they touch each other will be deep inside the joint, unable to get wet. And the alloy block is much much larger than a small steel fitting, so there is plenty of "sacrificial" capacity there. Any bush you put in there will be dissimilar anyway. Either steel or brass. Maybe stainless. All of them are different to the other parts in the chain. But what I said above still applies.
    • You are all good then, I didn't realise the port was in a part you can (have!) remove. Just pull the broken part out, clean it and the threads should be fine. Yes, the whole point about remote mounting is it takes almost all of the vibration out via the flexible hose. You just need a convenient chassis point and a cable tie or 3.
×
×
  • Create New...