Jump to content
SAU Community

Recommended Posts

Here's one of the threads about it:

http://www.skylinesaustralia.com/forums/Gt...turbo+boost+add

Any logical person that knows a bit about physics realises that each pressure can not combine the way people are thinking.

Edited by PM-R33
Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5198703
Share on other sites

The real question is, if you run a turbo + supercharge setup, what will the boost be :P

Forgot to say too, it isn't so much about how much boost the turbos make, it is more about how hard they WORK to make that. All things being equal, 2 turbos will only have roughly half as much work done on them to make the same boost, since the air FLOW is higher even though boost is the same.

Edited by Thelen
Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199336
Share on other sites

^^^ well if the super is receiving air from the turbo it will be compressing compressed and pressurised air therefore e.g 2.5psia from the turbo compressor outlet into super inlet will give 5psia.... It would be like compound turbocharging, 40psi anyone?

If the super and turbo are receiving atmosphere air then if both run 12psi then manifold pressure should be 12psi??? not too sure on this one.

Edit: Let me make sure that im perfectly clear on this subject, if my sr20det made 200rwk at 1bar from a t28 will that mean that two t28's will make 400rwk at 1bar total?

Edited by 2lazy
Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199371
Share on other sites

manifold prussure, is exactly that, pressure in the manifold, or what we call "boost" when its past positive pressure or absolute pressure

where the pressure comes from is irrelevant, ie 1 turbo, 2 turbos, 3 turbos, supercharger and turbocharger etc

and pressure does not equal volume

this why 15psi on a stock turbo vs 15psi on a GT35R make different levels of power

Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199637
Share on other sites

I understand that but on that link there are two arguments, one is that:-

two turbos making both 1bar will make half has much air as one turbo making 1bar(same turbo model as the twin), so they flow the same both twin or single. You will see 1bar on your boost gauge with both set ups but they make ruffly the same amount of hp.

The other argument:-

twin turbos both at 1bar will make 1bar of pressure at the manifold BUT it will flow twice as much air.

Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199664
Share on other sites

I understand that but on that link there are two arguments, one is that:-

two turbos making both 1bar will make half has much air as one turbo making 1bar(same turbo model as the twin), so they flow the same both twin or single. You will see 1bar on your boost gauge with both set ups but they make ruffly the same amount of hp.

The other argument:-

twin turbos both at 1bar will make 1bar of pressure at the manifold BUT it will flow twice as much air.

You need to remember boost is a measure of restriction to air flow.

Keep everything at the same efficiency, increase air flow, boost will increase...

Hence two turbos at one bar combined flow as much air as one turbo at 1bar, making the same power...

Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199675
Share on other sites

Exactly, boost is a measure of restriction. It means the turbo(s) are pushing that much air, that the engine can't keep up taking it all in so it builds up and increases in pressure. (Think of blowing up a balloon). It is all about volume of airflow! Turbo(s) technically do not create "boost", they create heaps of airflow that as a result of being in an engine environment ends up being pressurised which is what we call "boost". Hence if you pop an intercooler pipe, no restriction, no boost in the intercooler pipes (theres a lot more that comes into play here but in general that's an easy way to think about it).

Edited by PM-R33
Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199731
Share on other sites

Exactly, boost is a measure of restriction. It means the turbo(s) are pushing that much air, that the engine can't keep up taking it all in so it builds up and increases in pressure. (Think of blowing up a balloon). It is all about volume of airflow! Turbo(s) technically do not create "boost", they create heaps of airflow that as a result of being in an engine environment ends up being pressurised which is what we call "boost". Hence if you pop an intercooler pipe, no restriction, no boost in the intercooler pipes (theres a lot more that comes into play here but in general that's an easy way to think about it).

That is the best way I've heard someone describe it and should assist people in understanding.

Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5199836
Share on other sites

pressure is constant but the flow/ volume of air doubles

not exactly. the possible volume of air doubles (free air delivery). once you put them into an enclosed system such as they are on an engine, and have the boost regulated by a wastegate measuring pressure (aka resistance), then you won't get double the airflow. your total airflow won't really change much because the things that are causing the restriction will still cause the same level of restriction whether you compress the air via 1 million mice blowing through straws or the worlds biggest turbo. there is a limit to how much extra air you can flow through the intake before you are going to hit the same restriction and i would guess that it isn't much more than with anything else.

"but people make more power with bigger turbos at the same pressure" is a common reply to that line of thinking, and i understand that, but how much of that is down to the bigger compressor on the turbo and how much is down to the fact that the exhaust flow is much higher and there is much less restriction on the exhaust side of the turbo? i'd say that a fair bit is on the exhaust side and not that much has to do with the bigger compressor (not saying that it doesn't play any part in it, but just not as much as people think).

Link to comment
https://www.sau.com.au/forums/topic/317943-dumb-question/#findComment-5207296
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • When you crank your car, and hit it with a timing light, can you see a steady crank timing?
    • Oh, forgot to add, A few months ago I was getting mixture codes and the car was using crap loads of fuel. You could smell the unburned fuel in the exhaust, it was crazy strong. Economy was over 17.5 l/100 and usually around 19. I smoked the engine and found a leaky CCV hose which I replaced and then I replaced my two pre cat O2 sensors, I also replaced the MAF. This fixed my mixture codes and improved my exonomy but I'm still 14 - 15 l/100 when pottering about town so something is still amiss. Throttle response is much better and it has more pep but I'd like to know why it's still so thirsty (and I'm hoping that whatever it is gives me a bit more poke).    
    • Car is on factory injectors/z32 maf/ q45 throttle body/ z32 ecu with nistune 
    • Hello all, currently finishing up a rb25 swap into my s14. Having issues with starting, car has spark (confirmed by pulling a plug and watching it spark), has fuel(confirmed by checking pulse/voltage at injectors all spark plugs are soaked in fuel). Car cranks over and pops into the exhaust with a heavy fuel smell but no attempt to start or run, I have torn the timing cover off and triple confirmed timing, turned the CAS in multiple spots both directions, attempted to start with coolant temp and maf unplugged, checked my fuel lines and made sure they weren’t backwards, checked voltage at cas/injectors/coilpacks, made sure all the grounds in the harness are connected and added a few grounding straps (1 from chassis to block, 1 from chassis to head, and 1 from chassis to igniter chip) I am getting stumped here. As a last ditch effort I made a full grounding harness tonight that’s going to run from the battery and add an extra ground from the battery onto the coil pack harness/igniter chip/ intake manifold/ Wiring specialties harness ground/ and alternator. I’m hoping maybe the grounding harness will fix it here but posting here to see if anyone has any other ideas on what else I can check. My fuel pressure is unknown right gauge will be here tomorrow.  IMG_3206.mov
    • yeah I was shocked when I checked my spare OEM on and as below that's how they come from Nissan. (side interesting note new NEO gearbox and replacement park lack the brass bush on the tips and its just all alloy) unsure about damage to the box currently back at 1110 to be pulled down/inspected and selector fork replaced as he built it previously and given the never before seen failure on his billet forks he is replacing it under warranty. He said he has used always OEM the keyway tab without issue for years so it could be an unlucky coincidence. I did talk to him about the sharp corners and stress concentration too. Re: hard shifts i got 7+ years out of the OEM one and the fork itself failed not the keyway. so could be bad luck as I said or an age thing + heat cycles in box and during fabrication of billet?
×
×
  • Create New...