Jump to content
SAU Community

Recommended Posts

The amount of air that goes through the bottle represents work done, more air means more work. Pressure inside the bottle represents efficiency - the lower the pressure, the more efficiently the work is being done. Different sizes of holes represent turbo sizes and how they affect efficiency. Bigger turbos generate more power than small turbos because of two main factors:

1)they pump more air mass more efficiently by themselves (higher airflow with lower compressor discharge temperatures)

2)they increase engine volumetric efficiency (big turbine housings are less restrictive than small ones)

Thanks for your replies guys, I'll get my head around it one day. Still what I am confused about is that my boost gauge lead is taking the boost pressure right at the intake just before it goes into the engine. So both turbos are having to move 10psi of air through the same size (volume) intake pipe all the way to the boost gage sensor as it enters the engine.

If I get a bigger turbo do I get a bigger pipe? In that case it will be running more flow of air at 10 psi because of a bigger intake pipe.

I UNDERSTAND that a Bigger turbo is capable of moving more air.

With the illustrations of the bottle I am guessing that your mouth is the turbo and the bottle is the intake pipe? Whether bigger or smaller lungs, if they hold the bottle at 10psi and leak out of a little hole... how is it different.

I know I am missing something somewhere.

no you still don't understand. PSI is a measure of PRESSURE. it has nothing to do with any quantity of air. turbo's are measured in lbs/min that is pounds per minute of airflow. wolverine's example was perfect. in that example your mouth is the compressor of the turbo (supplying the air), the body of the bottle is the engine and the bottom where you poke a hole/bigger hole/cut if off is the exhaust side of the turbo.

understand that the turbine housing stuck on the side of an engine is a restriction to exhaust flow. it's literally robbing your engine of some energy (power) and using it to drive the turbine which drives the compressor, the compressor compresses air and stuffs it into your engine. the bigger the compressor the more air it can compress at a given moment and the bigger the turbine the less restriction there is to flow in the exhaust.

the other problem is you are thinking about this in terms of a static measurement. you must include some measurement of time to compare these things. hence turbo's flow potential being measured in lbs/min of air flow. as in how many pounds can this compressor provide in one minute (at a given pressure).

the pipe on your engine has nothing (little) to do with it. change nothing else but your turbo. a standard turbo is still only going to flow X amount of air per min at 10psi and a much bigger turbo is going to provide much more air per minute at 10psi,

and I thought wolverine's was the best explanation so for. :blush:

I am pretty sure that there would be MANY people who don't understand that a larger turbo at the same boost flows more air.

I liked the coke bottle example :)

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

The more pressure for a given area, the higher the flow (which is why when you wind the boost up you get more power.. turbo is flowing more air).

Keep the flow the same but decrease the area, and the pressure goes up. Increase the area (LESS RESTRICTION), and you will flow more for same pressure.

Turbos (like engines) are an AIR PUMP, in laymans terms, the bigger the PUMP the more air it will PUMP.

A small pump moves LESS air for a given pressure than a larger pump.

I'm not sure how I can simplify it any further.. suggest howstuffworks.com or some similar site.

I am pretty sure that there would be MANY people who don't understand that a larger turbo at the same boost flows more air.

I liked the coke bottle example :)

not everyone starts off knowing everything : b

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

The more pressure for a given area, the higher the flow (which is why when you wind the boost up you get more power.. turbo is flowing more air).

Keep the flow the same but decrease the area, and the pressure goes up. Increase the area (LESS RESTRICTION), and you will flow more for same pressure.

Turbos (like engines) are an AIR PUMP, in laymans terms, the bigger the PUMP the more air it will PUMP.

A small pump moves LESS air for a given pressure than a larger pump.

I'm not sure how I can simplify it any further.. suggest howstuffworks.com or some similar site.

No flow is related to pressure difference. No pressure difference = no flow. Think about a bottle of gas, sitting there with 100psi of gas in it let's say. No flow but 100psi

Now plug it in or open the tap and gas flows out. This is because atmospheric pressure is 14.7psi and the gas bottle has 100psi in it. Large pressure difference so large flow. You can't just say more pressure = more flow. The true statement really would be more pressure difference = more flow (across the same cross sectioned area)

Cheers to all with a positive input, iv ordered injectors and will be running a map ecu when i get it tuned which will be asap. Im not building the auto any stronger yet, the bloke at the shop said they are good for 300kw without dramas, and i didnt go out and buy the to4 it came with a head i got all second hand. He said with my setup ill be able to get 400+ kwatw but with standard driveline its obviously a stupid idea. And i do intend down the track to put 3k stall in it, therefore having a turbo that big will not really disadvantage me. Any ballpark figure of torque at how many revs you think? Iv learnt alot from most of you and thanks for all the input.Im sorry if i upset a few of you through my stupid questions or arrogance or any other reason. I do intend to be an active member on here as this is a great site and awesome info available, especially as most of you have been through the same troubles im working through with my build, so anyone with a grudge please forgive me about the bad start. Thanks very much guys

If u want to get along with everyone dont say things like - its just physics mate, implying everyone else is wrong

I know, i thought it was right, but after learning about the 'flow' side of it all versus pressure, i would'nt hesitate to retract that comment. So for what its worth im sorry

  • Like 1
  • Nope 1

This thread has been very rewarding for all parties. Could do with a little less rage but we're getting there :D. Here is some interesting reading for you Amon,

http://www.automotivearticles.com/Turbo_Selection.shtml

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

Having another read over the thread, the most that was said was pressure does not = flow. Which was made reference too quite well.

The science involved in determining flow does include pressure however the relationship is not direct. This is the most that has been conveyed, which is a realistic explanation for those struggling with the concept to begin with. I would say it takes a while to master the concept in total.

Remember blokes are normally interested in cars/books/beer or women and generally only two at a time. EVERYONE likes beer and women so your likely to find most on a CAR forum arent likely to like books that much

**NB - Statement not relevant to Discopotato03 - it is guaranteed he likes atleast 3 of the above, women not too sure :rolleyes:

dude PSI and air flow are two different things flow is the volume of air, psi is the pressure or force how fast the air travels,, think of it this way get a foot pump a bike tyre and a car tyre pump the bike tyre to 20psi count how many pumps it takes then, the car tyre to 20psi , the car tyre has alot more volume than a bike tire right? there fore it will take more pumps to get it to 20psi at the end you still have 20psi pressure in both tyres but the volume of air will be much more , same as a turbo mate you understand?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I had 3 counts over the last couple of weeks once where i got stranded at a jdm paint yard booking in some work. 2nd time was moving the car into the drive way for the inspection and the 3rd was during the inspection for the co2 leak test. Fix: 1st, car off for a hour and half disconnected battery 10mins 4th try car started 2nd, 5th try started 3rd, countless time starting disconnected battery dude was under the hood listening to the starting sequence fuel pump ect.   
    • This. As for your options - I suggest remote mounting the Nissan sensor further away on a length of steel tube. That tube to have a loop in it to handle vibration, etc etc. You will need to either put a tee and a bleed fitting near the sensor, or crack the fitting at the sensor to bleed it full of oil when you first set it up, otherwise you won't get the line filled. But this is a small problem. Just needs enough access to get it done.
    • The time is always correct. Only the date is wrong. It currently thinks it is January 19. Tomorrow it will say it is January 20. The date and time are ( should be ! ) retrieved from the GPS navigation system.
    • Buy yourself a set of easy outs. See if they will get a good bite in and unthread it.   Very very lucky the whole sender didn't let go while on the track and cost you a motor!
    • Well GTSBoy, prepare yourself further. I did a track day with 1/2 a day prep on Friday, inpromptu. The good news is that I got home, and didn't drive the car into a wall. Everything seemed mostly okay. The car was even a little faster than it was last time. I also got to get some good datalog data too. I also noticed a tiny bit of knock which was (luckily?) recorded. All I know is the knock sensors got recalibrated.... and are notorious for false knock. So I don't know if they are too sensitive, not sensitive enough... or some other third option. But I reduced timing anyway. It wasn't every pull through the session either. Think along the lines of -1 degree of timing for say, three instances while at the top of 4th in a 20 minute all-hot-lap session. Unfortunately at the end of session 2... I noticed a little oil. I borrowed some jack stands and a jack and took a look under there, but as is often the case, messing around with it kinda half cleaned it up, it was not conclusive where it was coming from. I decided to give it another go and see how it was. The amount of oil was maybe one/two small drops. I did another 20 minute session and car went well, and I was just starting to get into it and not be terrified of driving on track. I pulled over and checked in the pits and saw this: This is where I called it, packed up and went home as I live ~20 min from the track with a VERY VERY CLOSE EYE on Oil Pressure on the way home. The volume wasn't much but you never know. I checked it today when I had my own space/tools/time to find out what was going on, wanted to clean it up, run the car and see if any of the fittings from around the oil filter were causing it. I have like.. 5 fittings there, so I suspected one was (hopefully?) the culprit. It became immediately apparent as soon as I looked around more closely. 795d266d-a034-4b8c-89c9-d83860f5d00a.mp4       This is the R34 GTT oil sender connected via an adapter to an oil cooler block I have installed which runs AN lines to my cooler (and back). There's also an oil temp sensor on top.  Just after that video, I attempted to unthread the sensor to see if it's loose/worn and it disintegrated in my hand. So yes. I am glad I noticed that oil because it would appear that complete and utter catastrophic engine failure was about 1 second of engine runtime away. I did try to drill the fitting out, and only succeeded in drilling the middle hole much larger and now there's a... smooth hole in there with what looks like a damn sleeve still incredibly tight in there. Not really sure how to proceed from here. My options: 1) Find someone who can remove the stuck fitting, and use a steel adapter so it won't fatigue? (Female BSPT for the R34 sender to 1/8NPT male - HARD to find). IF it isn't possible to remove - Buy a new block ($320) and have someone tap a new 1/8NPT in the top of it ($????) and hope the steel adapter works better. 2) Buy a new block and give up on the OEM pressure sender for the dash entirely, and use the supplied 1/8 NPT for the oil temp sender. Having the oil pressure read 0 in the dash with the warning lamp will give me a lot of anxiety driving around. I do have the actual GM sensor/sender working, but it needs OBD2 as a gauge. If I'm datalogging I don't actually have a readout of what the gauge is currently displaying. 3) Other? Find a new location for the OEM sender? Though I don't know of anywhere that will work. I also don't know if a steel adapter is actually functionally smart here. It's clearly leveraged itself through vibration of the motor and snapped in half. This doesn't seem like a setup a smart person would replicate given the weight of the OEM sender. Still pretty happy being lucky for once and seeing this at the absolute last moment before bye bye motor in a big way, even if an adapter is apparently 6 weeks+ delivery and I have no way to free the current stuck/potentially destroyed threads in the current oil block.
×
×
  • Create New...