Jump to content
SAU Community

Recommended Posts

"air that was previously flowing towards the TB does in fact have to turn around and flow the other way in order to decrease the pressure in the tract."

I put it forward, there's no need for the air to reverse and flow the other way. Consider this - throttle shuts, airflow into engine stops as throttle plate has now blocked path. Compressor still spinning and pumping air into piping which is now not flowing. BOV located straight after compressor on intercooler piping lets this air out rather than pressure building and pushing against compressor. So the airflow would be effectively stopped, pressure remains the same, and any incoming air would continue to flow the same way, just be diverted straight out the BOV rather than continuing through towards the engine. Get back on throttle and more boost pressure is already there as it hadn't been depressurised in front of throttle plate.

To be honest i think the difference between putting it just before throttle, or just after compressor, would be sweet F.A, in most cases, but it makes sense to me to put it in front of compressor. For another reason, when no longer being driven by the turbine (under closed throttle) the compressor will slow down alot more trying to drive air through the intercooler rather than allowing it to vent out straight away before passing through the I/C.

Obviously this is based on zero hours of research and development by me :P and I'm sure auto manufacturers might have given it at least a few hours testing.....

Nup. Inlet tract at 20 psi. Throttle slams shut and turbo still piling air in, sure. But if you watched a boost gauge connected to the inlet tract (rather than the plenum) during such an event and you will see the pressure fall a long way below the boost pressure it was running at. That only occurs because the air goes out through the hole. The air has to come from everywhere and will flow from the furthest points towards the hole.

Air has mass and inertia. Making it stop and turn about to flow back the other way is inefficient and does work on the air - which ultimately ends up as either heat, or extra pressure (in the form of pulses running up and down the inlet tract).

Again, I must stress that I'm not maintaining that it is the most important consideration in "designing" such a system. But is apparently considered important enough by people who were paid to do it to do it in a particular way, rather than the apparently easier and cheaper alternative.

Can you put a pic up of your engine bay?

Also a while back when I was intending to go high mount ext gate turbo I planned on using parts I found in the US which were a 2" flex pipe which was designed as a kit for external gate setups. The way it looked was pretty good. One end had a bung which was welded to a piece of pipe from your gate and another bung welded into your exhaust and was at a 45 degree angle(they came in different angles). Then you use the hose which was x cm long and attached one end to your WG and the other to the bung in the exhaust. Good thing about the setup was you could undo it all in a matter of minutes and go straight to a atmo vent setup if you wished. The guy who was selling them stopped and I have never seen anything close to them since. This was about 2 years ago.

Weld the adapter underneath the intercooler pipe next to the intake, weld nipple to side of intake bend. Attach BOV to IC piping, run return to the nipple on intake pipe. Any metal/fab shop could complete the welding for a carton.

  • Like 1

Weld the adapter underneath the intercooler pipe next to the intake, weld nipple to side of intake bend. Attach BOV to IC piping, run return to the nipple on intake pipe. Any metal/fab shop could complete the welding for a carton.

No worries, my pop can weld. So I'll ask him to see if he can sort something out.

Thanks again guys :)

  • Like 1

got to say, I look forward to your posts GTSBoy, you're certainly a learned fellow. Just posted something in the braking section I'd like your thoughts and input on, if you care to do so.

Re above "But if you watched a boost gauge connected to the inlet tract (rather than the plenum) during such an event and you will see the pressure fall a long way below the boost pressure it was running at. That only occurs because the air goes out through the hole."

agreed, this being the point of a BOV to release pressure.

"The air has to come from everywhere and will flow from the furthest points towards the hole." if you looked at a smoke test though, wouldn't you see it start to flow through from the area immediately located from the source of the escape route (BOV)? So if you put it as close to the compressor as possible (with the BOV intended to prevent reversion and damage to the compressor) it would reduce pressure in this area first thus preventing reversion and damage to turbo.

I don't claim to have done the research and testing to make this theory foolproof by any means; as we all know from doing basic modifications from day one of owning a turbo car, OEM specs can be improved upon and you got to wonder how much convenience and budgets play a part in R&D and the mass-marketed final product.

if you looked at a smoke test though, wouldn't you see it start to flow through from the area immediately located from the source of the escape route (BOV)? So if you put it as close to the compressor as possible (with the BOV intended to prevent reversion and damage to the compressor) it would reduce pressure in this area first thus preventing reversion and damage to turbo.

Pressure pulses in air travel at the speed of sound. At normal atmospheric pressure and temperature, that's 300m/s or so. It's a bit different with hotter high pressure air, but it's still bloody fast. The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open. Sure, the first air to escape is the air closest to the BOV, but all the air in the tract starts to move towards the BOV as soon as it's open. Well, except for the air near the TB which has to stop and turn around first, but even that doesn't take very long.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

So why did nissan mount it where they did? They could have put it heaps closer to the inlet pipe that its plumbed back to, and eliminated the metal pipework on the return side. They have gone to the extra trouble of mounting it as close to the throttle for a reason.

you're kind of killing your own arguement there though, if "The effect of opening the BOV is felt everywhere in the inlet tract within a couple of milliseconds of it cracking open." then the assertion "The BOV should be physically located close to the throttle body" - a cpl of milliseconds, it wouldn't matter where you put it, and so you could mount it whereever was most convenient and any performance advantage would be negligible if we're talking a couple of milliseconds.

No I'm not. The pressure signal is felt quickly. The result, being the decel followed by accel in the other direction takes a lot longer and actually triggers reverbatory pressure pulses that don't need to be there. If the BOV is located at the end of the pipe towards which the air is already flowing, then the air just keeps going that way and dumps out the BOV with no upset.

But, again, I must stress that apart from it being obvious that some serious engineers think it's a good idea to locate it near the TB, it's not likely to be the be all and end all in the decision you make about where to stick the BOV. If it were me doing some plumbing design for a new engine in a new engine bay or modding up an engine in an existing engine bay, I'd try to keep the BOV near the TB, but if I couldn't I wouldn't get liver cancer from the stress of it.

Hey guys, I'm having trouble finding an adaptor plate for my 'Kompact Plumback'

But I do have the spec sheet (of the BOV) with the exact measurement of the base ect.

Will an exhaust shop be able to make up an adaptor plate for it?

If I hand them this sheet.

image-50.jpg

Edited by ZRBE

An exhaust shop, no.

Any fabricator could make one. Does it need to be alloy or stainless?

The plate can be removed off the bov I am fairly sure, that way you could use a round hose instead.

An exhaust shop, no.

Any fabricator could make one. Does it need to be alloy or stainless?

The plate can be removed off the bov I am fairly sure, that way you could use a round hose instead.

My cooler pipe is stainless. So, I guess the adaptor stainless as well?

But if I can remove the plate from bottom of the BOV and just use a hose to connect it to the cooler pipe. Then I might do that, sounds easier and probably a better seal..

Personally, just removed the SSQ and "cap" it off.

BTW the BOV will be the last thing they look for after they see your turbo... :action-smiley-069:

Well I will be removing the SSQ altogether and capping it.

Then putting in the TurboSmart one in. On that bend closest to intake.

Haha the first time I was pulled over in my 32 the cop knew P Platers could NOT drive turbos (so did I) but looked straight at my turbo.. :P

Edited by ZRBE
  • 2 weeks later...
  • 1 month later...

Well I found a welder.. Ended up using the turbosmart kompact..

I have a really bad feeling I might of set it up incorrectly.... :/

I'll post a pic up in a sec, I know that hose is kinked I have bought a new hose that won't kink.

So that's sorted..

Just wondering with the skinny black hose ontop of the BOV. Does that connect to the back of the throttle body?

I know it's waaaay too long haha I need to cut it shorter.

Appreciate the help guys!! :)

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Clutch is a spec brand, new clutch system,( PP, flywheel, friction disc, etc. pull type) installed 100 miles ago, with no problems.
    • looking for some help and maybe some insight on others experience with a new LSD. R34 GT ran and drove beautifully, but always alot of grip loss due to the open R200 rear end, so I just installed a new 1.5 LSD way into the stock open R200 for a ER34. Simple. Everything seemed right. I test drove for the first time this weekend. as I started to back out the garage the first time slowly with tires straight it sounded and felt like I had a loose or half disconnected drive shaft...that was clucking around loose and shaking entire vehicle, and making it feel like the trans clutch was spontaneously slipping then grabbing very roughly while just letting out pedal slowly. I backed it out went to pull forward with the same noise, shake and slip grab feeling with hesitation, I turned the tires to back out more and then pulled ahead some same thing but worst because of added wheel resistance (which that I expected) puzzled … pulling it back in checking everything over and finding nothing wrong, I tried it the next day. same thing, couldn’t believe how it shook everything again making a terrible noise and making it feel like the trans clutch was slipping and grabbing, but I got it out of garage into the driveway, got it straight, drove forward and then reveres a few times in a straight line everything shaking , causing what felt like clutch slip and grab every time, sounded like right behind front driver tire and I could feel it in the floor board with my feet,... worst right when beginning to let clutch pedal out to engage slightly, shuttering and sounding terrible along the way…I managed to slowly get down the road, babying it the whole way, once I was rolling (out of 1st) seemed to be better and between shifts, then clutch felt closer to normal…not slip/ grab etc., but back down to any stop, straight road or turning, same thing. Made no difference if all tires were straight or if I was turning. All other gauge read out correct. with in 2 miles as planned I reached the empty parking lot and performed the break in procedure that came with lsd, essentially to drive in a figure 8 a bunch.  Did this, binding chattering, and shaking the car the whole way. I drove it back home seemed somewhat normal once I was in straight line and past 10 mph or so, and I know it will “bind” on corners and cause some tires squeal when turning especially from a stop, but when I begin to move it still causes what feels like the trans clutch to slip and jerk badly as well as shaking the entire car, and sounds terrible, that I didn’t expect. I used the fluid they supplied with LSD kit and did the breaking, planning to change fluid as they suggest after breaking, but wondering will it get smoother or less aggressive with use? maybe a 1.5 is just too aggressive for normal road driving?   I have a LSD that I put in my 71 cuda when I restored it, with amazing smooth , quite yet effective results. Different style LSD but that ones a joy to drive. maybe expecting too much from this R200?
    • Join SAU NSW for a flame-grilled feed & flame-spitting cruise! Sunday 17th August 2025 3:30PM Meeting Archies Flame Grille Sylvania Waters 4:45PM Cruise Departure 5:15PM Arrival at Cape Solander Kurnell Meet Location: Archies Flame Grille Final Destination: Cape Solander Kurnell *Disclaimer* There will be a lead and follow car so no one should get lost. If you would like to attend or bring others along please put your name down and a +1 as numbers will be needed prior! This is NOT a race and we will all be adhering to all road rules. If this is what you want please come to one of our many track days. This is an official SAU:NSW event and will be run under a CAMS permit. One of the things that really sets our club apart is our commitment to being true enthusiasts. When on normal roads we strive to maintain good relations with the authorities as well as the public in general. When attending one of Skylines Australia NSW events please try to: • Be aware of surrounding environment and act accordingly. • Drive courteously on the state’s roads as a true enthusiast should. • Understand how important it is to maintain the good name of SAU NSW and thus, treat others accordingly. • Any misbehavior will not be tolerated and you will be asked to leave.
    • Yeah good luck out there! Will be good to see a mighty GTST going harder than the GTRs
    • i will be there 😁
×
×
  • Create New...