Jump to content
SAU Community

Recommended Posts

Been looking through as many photos and specs as possible. Can't wait to see this beast. When I saw, this photo, however, it got me a bit concerned.

2008-Nissan-GT-R-Powertrain-1280x96.jpg

As you can see the gearbox is located at the back, which is great for weight distribution. The concern I have is the shaft that travels from the engine to the gearbox. This shaft will be spinning up to 7-7.5k rpm. For a shaft of this length to be spinning at that speed, it would need to be perfectly balanced. This is very difficult to achieve. That is why formula one have gone to V8's. Because the shorter shaft is easier to balance at those high speeds. If the gearbox was in the front, it wouldn't be a problem as the shaft would be spinning a lot slower due to being geared down. This is how most rear wheel drives operate.

What do you guys think?

Link to comment
https://www.sau.com.au/forums/topic/192496-weakness-of-the-new-gtr/
Share on other sites

  • Replies 45
  • Created
  • Last Reply

Top Posters In This Topic

i disagree im afraid on this point

F1 went to v8's because of the regulations. The FIA wanted to cut costs and thought this could be achieved by dropping 2 cylinders.

It wasnt because of drive shafts.

Aston martin and a couple of other modern supercars use this same technology and they seem to have no problems with the shaft not being balanced properly... also keep in mind that the material the shaft is made of is a lot lighter these days than the oldschool chunk of metal.... lot less forces acting outwards due to weight.

F1 cars are shorter stroke high RPM cars... we're talking about a GTR here which will see half those RPM's in day to day use.

Will be interesting to see what the GT500 platform is, as that's usually what the aftermarket performance world tries to emulate.

I'm not doubting the Nissan engineers. I'm sure they have it all figured out. I just know that the longer you make a shaft, the harder it becomes to balance due to more and more harmonic frequencies that come into play. I just find it quite interesting :rolleyes:

i disagree im afraid on this point

F1 went to v8's because of the regulations. The FIA wanted to cut costs and thought this could be achieved by dropping 2 cylinders.

It wasnt because of drive shafts.

Have you noticed the gain of the redline they are capable of with the shorter shaft. That was more my point. A shorter shaft can be spun a lot faster.

So you think that the Nissan engineers have over seen this issue :dry:

I'm sure they have it under control :rolleyes:

Nissan engineers make a car for regular use under factory specifications... I think what the OP meant was the suitability of the technolog for high end tunes.

Nissan engineers also spent millions of dollars on oil drainage and recirculation on the RB26DETT, and we all know how well they do on a circuit.

Think about this:

By the time a conventionally-configured car is in either 5th or 6th gear, (considering both are overdrive gears) the tailshaft is actually spinning FASTER at any given engine speed than the new GTR tailshaft which will always be at 1:1 with engine revs. I also think from memory the new GTR has a composite/carbon fibre tailshaft which goes a long way to negating problems with harmonics etc

Yea, didn't think of that. Thats a good point. Didn't really think about conventional tail shafts doing that speed, but in top gears they would. Its an interesting configuration none the less. Can't wait to see it in the flesh :thumbsup:

Nissan engineers make a car for regular use under factory specifications... I think what the OP meant was the suitability of the technolog for high end tunes.

Nissan engineers also spent millions of dollars on oil drainage and recirculation on the RB26DETT, and we all know how well they do on a circuit.

Monkey you funky dummy, the Nurburgring and all the countless other extreme tests are hardly regular use.

Think about this:

By the time a conventionally-configured car is in either 5th or 6th gear, (considering both are overdrive gears) the tailshaft is actually spinning FASTER at any given engine speed than the new GTR tailshaft which will always be at 1:1 with engine revs. I also think from memory the new GTR has a composite/carbon fibre tailshaft which goes a long way to negating problems with harmonics etc

true, true- but on most old 5-speed gearboxes, 4th gear war direct anyway, so actually only 1st, 2nd and 3rd would have seen prop shaft speeds below engine speed. the thing to consider is, with the current setup, the prop shaft will be under less load at high-speed, due to the fact that while it has to transmit the same huge twisting force required to push the car through the air at speed, it won't have as much centrifugal force acting on it at the same time :thumbsup:

the only draw back with this sort of setup with a normal gearbox, is that the synchros essentially have to "brake" the speed of the propshaft as well as the reciprocating mass of the engine before selecting the next higher gear. but due to the fact that it's made from carbon/kevlar and no doubt a lot lighter than steel, and that the DSG gear pre-selection eliminates most of the synchro wear, all is well.

A few of points.

1. F1 cars do not have tail shafts.

2. Transaxles have been around for longer than carbon fibre has been used in motor cars.

3. All that Nissan have to do is to ensure that the harmonic frequency for the tail shaft is higher than the speed that the tail shaft can reach. Obviously putting the shaft being before the gearbox has a tendency to make the figure a higher number (Assuming you can't hit the redline in top gear - not true in the case of most GT-R's). As an example my old AU Foulcan has a limiter set at 180km/h to prevent this very problem.

lol people are too concerned with finding something wrong with the new GTR. i dont think nissan would be putting anything in this car without millions of R&D and testing.

Yeah, strange isn't it. You'd think that the fact that it is both ugly & over weight would be enough for most people.

Yeah, strange isn't it. You'd think that the fact that it is both ugly & over weight would be enough for most people.

thats down to personal opinion. maybe its a bit heavy but u cant argue with the times its putting out, and i rekon its hot as :happy:

WAIT WAIT HOLD PRODUCTION. INTERNET FORUM USER FINDS FLAW IN NISSAN DESIGN.

Back to the drawing board everyone... :P :P

lol :thumbsup:

Yeah, strange isn't it. You'd think that the fact that it is both ugly & over weight would be enough for most people.

:yes: Gold!!

Just a quick comment about the driveshaft. In this design, the driveshaft will see maximum RPM every time you redline the engine, meaning it will see a lot of cycles at maximum load (fatigue and all that). In a "conventional" driveshaft design, the driveshaft will only spin at redline speeds when the car is travelling at approx 200km/h+ (this varies hugely with diff ratio, obviously).

Conversely, a conventional driveshaft will see a lot more torque transmitted through it, as the engine torque is multiplied through the gearbox, whereas the new GTR driveshaft will only ever see the max engine torque (as well as impact loading under clutch dump situations etc.)

Bottom line? Probably nothing to worry about, as the Nissan Engineers would have covered it. If the shaft speeds became an issue, it's nothing to replace the single piece driveshaft with a 2 piece unit. Problem then goes away.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • The average previous owner for these cars were basically S-chassis owners in the US. Teenagers or teenager-adjacent. I often tell people that neglect is easier to fix than something that was actively "repaired" by previous owners.
    • Update 3: Hi all It's been a while. Quite a lot of things happened in the meantime, among other things the car is (almost) back together and ready to be started again. Things that I fixed or changed: Full turbo removal, fitting back the OEM turbo oil hardlines. Had to do quite a bit of research and parts shopping to get every last piece that I need and make it work with the GT2860 turbos, but it does work and is not hard to do. Proves that the previous owner(s) just did not want to. While I was there I set the preload for the wastegates to 0,9bar to hopefully make it easier for the tuner to hit the 370hp I need for the legal inspections that will follow later on. Boost can always go up if necessary. Fitted a AN10 line from the catch can to the intake hose to make the catchcan and hopefully the cam covers a slight vacuum to have less restrictive oil returns from the head and not have mud build up as harshly in the lines and catch can. Removed the entire front interior just shy of the dashboard itself to clean up some of the absolutely horrendous wiring, (hopefully) fix the bumpy tacho and put in LED bulbs while I was there. Also put in bulbs where there was none before, like the airbag one. I also used that chance to remove the LED rpm gauge on the steering column, which was also wired in absolute horror show fashion. Moved the 4in1 Prosport gauge from sitting in front of the OEM oil pressure gauge to the center console vents, I used a 3D printed vent piece to hold that gauge there. The HKB steering wheel boss was likely on incorrectly as I sometimes noticed the indicator reset being uneven for left vs. right. In the meantime also installed an airbag delete resistor, as one should. Installed Cube Speed premium short shifter. Feels pretty nice, hope it'll work great too when I actually get to drive. Also put on a fancy Dragon Ball shift knob, cause why not. My buddy was kind enough to weld the rust hole in the back, it was basically rusted through in the lowermost corner of the passenger side trunk area where the wheel arch, trunk panel and rear quarter all meet. Obviously there is still a lot of crustiness in various areas but as long as it's not rusted out I'll just treat and isolate the corrosion and pretend it's not there. Also had to put down a new ground wire for the rear subframe as the original one was BARELY there. Probably a bit controversial depending on who you ask about this... but I ended up just covering the crack in the side of the engine block, the one above the oil feed, with JB Weld. I used a generous amount and roughed up the whole area with a Dremel before, so I hope this will hold the coolant where it should be for the foreseeable future. Did a cam cover gasket job as the half moons were a bit leaky, and there too one could see the people who worked on this car before me were absolute tools. The same half moons were probably used like 3 times without even cleaning the old RTV off. Dremeled out the inside of the flange where the turbine housing mates onto the exhaust manifolds so the diameter matches, as the OEM exhaust manifolds are even narrower than the turbine housings as we all know. Even if this doesn't do much, I had them out anyways, so can't harm. Ideally one would port-match both the turbo and the manifold to the gasket size but I really didn't feel up to disassembling the turbine housings. Wrapped turbo outlet dumps in heat wrap band. Will do the frontpipe again as well as now the oil leak which promted me to tear apart half the engine in the first place is hopefully fixed. Fitted an ATI super damper to get rid of the worn old harmonic balancer. Surely one of the easiest and most worth to do mods. But torquing that ARP bolt to spec was a bitch without being able to lock the flywheel. Did some minor adjustments in the ECU tables to change some things I didn't like, like the launch control that was ALWAYS active. Treated rusty spots and surface corrosion on places I could get to and on many spots under the car, not pretty or ideal but good enough for now. Removed the N1 rear spats and the carbon surrounding for the tailpipe to put them back on with new adhesive as the old one was lifting in many spots, not pretty. Took out the passenger rear lamp housing... what do you know. Amateur work screwed me again here as they were glued in hard and removing it took a lot of force, so I broke one of the housing bolts off. And when removing the adhesive from the chassis the paint came right off too. Thankfully all the damaged area won't be visible later, but whoever did the very limited bodywork on this car needs to have their limbs chopped off piece by piece.   Quite a list if I do say so myself, but a lot of time was spent just discovering new shit that is wrong with the car and finding a solution or parts to fix it. My last problem that I now have the headache of dealing with is that the exhaust studs on the turbo outlets are M10x1.25 threaded, but the previous owner already put on regular M10 nuts so the threads are... weird. I only found this out the hard way. So now I will just try if I can in any way fit the front pipe regardless, if not I'll have to redo the studs with the turbos installed. Lesson learned for the future: Redo ALL studs you put your hands on, especially if they are old and the previous owners were inept maniacs. Thanks for reading if you did, will update when the engine runs again. Hope nothing breaks or leaks and I can do a test drive.
    • No those pads are DBA too  but they have colors too. I look at the and imo the green "street" are the best.
    • I’m not sure what happened I told them about sonic tunes free OTS tune and the next the I know .. I was booted..   To funny 
×
×
  • Create New...