Jump to content
SAU Community

Recommended Posts

The amount of air that goes through the bottle represents work done, more air means more work. Pressure inside the bottle represents efficiency - the lower the pressure, the more efficiently the work is being done. Different sizes of holes represent turbo sizes and how they affect efficiency. Bigger turbos generate more power than small turbos because of two main factors:

1)they pump more air mass more efficiently by themselves (higher airflow with lower compressor discharge temperatures)

2)they increase engine volumetric efficiency (big turbine housings are less restrictive than small ones)

Thanks for your replies guys, I'll get my head around it one day. Still what I am confused about is that my boost gauge lead is taking the boost pressure right at the intake just before it goes into the engine. So both turbos are having to move 10psi of air through the same size (volume) intake pipe all the way to the boost gage sensor as it enters the engine.

If I get a bigger turbo do I get a bigger pipe? In that case it will be running more flow of air at 10 psi because of a bigger intake pipe.

I UNDERSTAND that a Bigger turbo is capable of moving more air.

With the illustrations of the bottle I am guessing that your mouth is the turbo and the bottle is the intake pipe? Whether bigger or smaller lungs, if they hold the bottle at 10psi and leak out of a little hole... how is it different.

I know I am missing something somewhere.

no you still don't understand. PSI is a measure of PRESSURE. it has nothing to do with any quantity of air. turbo's are measured in lbs/min that is pounds per minute of airflow. wolverine's example was perfect. in that example your mouth is the compressor of the turbo (supplying the air), the body of the bottle is the engine and the bottom where you poke a hole/bigger hole/cut if off is the exhaust side of the turbo.

understand that the turbine housing stuck on the side of an engine is a restriction to exhaust flow. it's literally robbing your engine of some energy (power) and using it to drive the turbine which drives the compressor, the compressor compresses air and stuffs it into your engine. the bigger the compressor the more air it can compress at a given moment and the bigger the turbine the less restriction there is to flow in the exhaust.

the other problem is you are thinking about this in terms of a static measurement. you must include some measurement of time to compare these things. hence turbo's flow potential being measured in lbs/min of air flow. as in how many pounds can this compressor provide in one minute (at a given pressure).

the pipe on your engine has nothing (little) to do with it. change nothing else but your turbo. a standard turbo is still only going to flow X amount of air per min at 10psi and a much bigger turbo is going to provide much more air per minute at 10psi,

and I thought wolverine's was the best explanation so for. :blush:

I am pretty sure that there would be MANY people who don't understand that a larger turbo at the same boost flows more air.

I liked the coke bottle example :)

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

The more pressure for a given area, the higher the flow (which is why when you wind the boost up you get more power.. turbo is flowing more air).

Keep the flow the same but decrease the area, and the pressure goes up. Increase the area (LESS RESTRICTION), and you will flow more for same pressure.

Turbos (like engines) are an AIR PUMP, in laymans terms, the bigger the PUMP the more air it will PUMP.

A small pump moves LESS air for a given pressure than a larger pump.

I'm not sure how I can simplify it any further.. suggest howstuffworks.com or some similar site.

I am pretty sure that there would be MANY people who don't understand that a larger turbo at the same boost flows more air.

I liked the coke bottle example :)

not everyone starts off knowing everything : b

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

The more pressure for a given area, the higher the flow (which is why when you wind the boost up you get more power.. turbo is flowing more air).

Keep the flow the same but decrease the area, and the pressure goes up. Increase the area (LESS RESTRICTION), and you will flow more for same pressure.

Turbos (like engines) are an AIR PUMP, in laymans terms, the bigger the PUMP the more air it will PUMP.

A small pump moves LESS air for a given pressure than a larger pump.

I'm not sure how I can simplify it any further.. suggest howstuffworks.com or some similar site.

No flow is related to pressure difference. No pressure difference = no flow. Think about a bottle of gas, sitting there with 100psi of gas in it let's say. No flow but 100psi

Now plug it in or open the tap and gas flows out. This is because atmospheric pressure is 14.7psi and the gas bottle has 100psi in it. Large pressure difference so large flow. You can't just say more pressure = more flow. The true statement really would be more pressure difference = more flow (across the same cross sectioned area)

Cheers to all with a positive input, iv ordered injectors and will be running a map ecu when i get it tuned which will be asap. Im not building the auto any stronger yet, the bloke at the shop said they are good for 300kw without dramas, and i didnt go out and buy the to4 it came with a head i got all second hand. He said with my setup ill be able to get 400+ kwatw but with standard driveline its obviously a stupid idea. And i do intend down the track to put 3k stall in it, therefore having a turbo that big will not really disadvantage me. Any ballpark figure of torque at how many revs you think? Iv learnt alot from most of you and thanks for all the input.Im sorry if i upset a few of you through my stupid questions or arrogance or any other reason. I do intend to be an active member on here as this is a great site and awesome info available, especially as most of you have been through the same troubles im working through with my build, so anyone with a grudge please forgive me about the bad start. Thanks very much guys

If u want to get along with everyone dont say things like - its just physics mate, implying everyone else is wrong

I know, i thought it was right, but after learning about the 'flow' side of it all versus pressure, i would'nt hesitate to retract that comment. So for what its worth im sorry

  • Like 1
  • Nope 1

This thread has been very rewarding for all parties. Could do with a little less rage but we're getting there :D. Here is some interesting reading for you Amon,

http://www.automotivearticles.com/Turbo_Selection.shtml

Wow there are some grossly inaccurate comments in here..

PRESSURE is related to flow, it is actually FORCE x AREA.

Having another read over the thread, the most that was said was pressure does not = flow. Which was made reference too quite well.

The science involved in determining flow does include pressure however the relationship is not direct. This is the most that has been conveyed, which is a realistic explanation for those struggling with the concept to begin with. I would say it takes a while to master the concept in total.

Remember blokes are normally interested in cars/books/beer or women and generally only two at a time. EVERYONE likes beer and women so your likely to find most on a CAR forum arent likely to like books that much

**NB - Statement not relevant to Discopotato03 - it is guaranteed he likes atleast 3 of the above, women not too sure :rolleyes:

dude PSI and air flow are two different things flow is the volume of air, psi is the pressure or force how fast the air travels,, think of it this way get a foot pump a bike tyre and a car tyre pump the bike tyre to 20psi count how many pumps it takes then, the car tyre to 20psi , the car tyre has alot more volume than a bike tire right? there fore it will take more pumps to get it to 20psi at the end you still have 20psi pressure in both tyres but the volume of air will be much more , same as a turbo mate you understand?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • The cross sectional area of a circular hole scales with the square of diameter. So a 2mm diameter hole is 4x the area of a 1mm hole. Not double. The 1.7mm hole is nearly 3x the area of a 1mm hole. You do not need restrictors at both ends of the oil supply line. If you have new, additional restrictors at the turbo end, that you did not have before, then you do not need a restrictor at the inlet end.
    • Hi all. Been a while but things are moving along. I just have something that I am wondering about. Since I will use OEM turbo oil pumbing, I got myself a new bolt, the one that goes into the engine block oil feed. As I recall (and see visually) this bolt comes restricted with I think a 1.7mm hole? Not quite sure but it was something around that size. The turbos have 1mm restrictor bolts installed, as necessary due to ball bearings and my higher oil pressures. Can I now just use that OEM bolt with the 1.7mm hole in for the engine block or will this actually be too much oil flow restriction and I have to drill it out first? In my head it would make sense for the bolt to be at least 2mm wide as both turbos take "1mm of oil flow". Do let me know if my logic is flawed here, I just want to make sure I don't kill my turbo bearings with too little oil. Don't know if I can trust the saying I read somewhere that ball bearing turbos essentially only need an oil mist
    • There are several aftermarket options available, from not-too-painful moneyhttps://justjap.com/collections/driveshafts-bearings/products/d-max-reinforced-replacement-rear-driveshaft-set-fits-nissan-s13-s14-s15-r32-r33-r34-c35 and  https://justjap.com/products/crank-motorsport-billet-rear-axles-fits-nissan-skyline-r33-gts-t-r34-gt-t?srsltid=AfmBOorQk4xkGUa98kO7v2ePLUiNt-HRrM2AwWNw9mbSIVE1ujBVwY__, all the way up to The Driveshaft Shop https://driveshaftshop.com/skyline-cv-axles/
    • Yeah based on old XRC5964S specs, it looks to be roughly GTX3576R sized? But this 5964S compressor will flow 90lb airflow somewhat similar to the compressors in both the GTX3584RS or G35-1050.. I fully expected the 0.64 rear A/R to choke up top - seems way too small from typical convention - but these are seemingly beneficial over the prior 0.82 results.. Be interesting to see if he comments on the EFR question in that thread - he mentioned in a prior video that BW EFR's were the "cats pajamas 10 years ago", but by the sounds of things all his kits have been using Xona for quite a while now.
    • Yeah it’s still got the oem manual gearbox and clutch, only kinda mods are a blow off valve, coil overs, and a aftermarket intercooler. Also had it for about 2 months now with a lovely midnight purple paint on it.
×
×
  • Create New...