Jump to content
SAU Community

Recommended Posts

I've planned to buy another GT-R for a long time, and when that time comes I've planned to need to rebuild or replace the 26. Most of the time, I keep coming back to the RIPS setups, but this is far more appealing to me.

why the change from twins to the single?

you couldn't resolve the shuffle issue?

Yes the shuffle was a bitch to resolve, but its not the reason for the switch. The divider in the twin turbo pipe and tuning sorted that out for the most part with the RB315. The shuffle was never gone completely, but with a lot of tuning I got it to happen lower in the rev range. It would shuffle around 1900 rpm, which was below where the engine drove for the most part. It was stable above that, and would spin both turbo's up nicely to 24lb by 3700ish. It was actually very nice to drive around town in traffic, wickedly quick even below 4500 rpm.

The real reason is that I have seen what these turbo's do on the 3.4lt 2JZ engines. The cam profile and displacement is extremely close to the 3.4lt testing that Sound Performance did with the 6266, 6466 and 6766 on a few other 2JZ's, the dyno results are all over the internet. Im sure you have seen them.

I must admit that part way through the front pipe and wastegate pipe manufacturing I was thinking twins again. It takes so long to get it right, and making a 4" system there isn't a lot of room to move.

The old twin setup would have needed to be revised as well. The dumps and front pipes were too small so I would have been after some old tomei or midori dumps and a big front pipe. Also the GTRS's would have had to be replaced with some GTX28's.

If there were to be a second reason, it would be simply because it looks bad ass! The visual impact of a high mount precision combined with how this engine sounds makes all the effort of building it worthwhile it for me.

If there were to be a second reason, it would be simply because it looks bad ass! The visual impact of a high mount precision combined with how this engine sounds makes all the effort of building it worthwhile it for me.

This!

Moving on...

Time came to fit the engine to the car. Much thanks goes to Lee Holman at a local workshop called SVS, as he essentially rented the use of a hoist for 2 days. This was the first time I had done a GTR engine R&R before, I usually just pay someone else to do it.

As the sump from the old engine was being used, the engine was just un-bolted and lifted off the sump. This meant no stuffing around with the front diff which was good.

When I stripped back the RB315, I removed the hot side of the engine when it was in the car. This allowed me to remove the AC Compressor from the engine and rope it to the side of the engine bay, so I didn't have to re-gas the system.

The reason it took two days was I found a couple of surprises when I remove the Exeedy Carbon clutch from the RB315. The locator dowel on the flywheel had a different size than the dowel in the back of the crankshaft A stepped dowel was made from a drill bit to correct this issue.

The initial install was done and I discovered the clutch master cylinder/greddy plenum contact issue, so the MC was just pulled out at that point. I later had some spacers laser cut from 10mm alloy to lower the k-frame a little. This gave me the clearance I needed.

post-26553-0-52122200-1383900700_thumb.jpg

post-26553-0-46401100-1383900758_thumb.jpg

post-26553-0-22537400-1383900812_thumb.jpg

post-26553-0-61653200-1383900851_thumb.jpg

post-26553-0-02841400-1383901164_thumb.jpg

Exhaust fabrication.

I used a 3.5-4" transition from the turbo, and fabricated a 4" front pipe. The system uses v-bands for all joins, which makes removing and re-fitting it a very quick and easy process.

It was extremely helpful having the old RB315 there to mock up on, as there is only 1mm difference in height between the two engines.

As you can see, the whole exhaust is wrapped in black lagging. I haven't gotten around to it yet, but will at some stage plumb the screamers back into the front pipe with slip fit joins to the existing screamer pipes.

post-26553-0-55774000-1383902047_thumb.jpg

post-26553-0-76780600-1383902083_thumb.jpg

post-26553-0-47467300-1383902126_thumb.jpg

post-26553-0-32929400-1383902186_thumb.jpg

Edited by GTRNUR

Beautiful work on the exhaust. Seems to step down a fair bit into the cat/decat?

Fark it's gunna sound insane with those twin gates screaming!

Seems to step down a fair bit into the cat/decat?

I kept the pipe work close to the header at first and as far away as possible from the firewall as I have a custom crankcase breather bolted to the side of the engine block. I am using the rear turbo train as a means of venting the crankcase and pulling it into a vacuum.

Just a question, with all this R&D done in increasing displacement in search of increasing the 'area under the curve'.

Have you looked into developing a variable cam timing for the intake or exhaust or even both ie. vcam???

Yes, I have an few ideas for a dynamic cam belt tensioner system that aims to reduce ignition timing variations caused by timing belt stretch at varying high engine speeds.

As a side effect of how that system works, the cam timing can be altered at various engine speeds. The challenge is fitting it in the 20m of space created in front of the engine by the spacer plate.

Its on the list of things to develop, but I have too many other projects on the go at the moment.

Also, I think less of "the area under the curve" than I do of moving the curve to the left. Some of the most fun I had with driving the previous engine were had while driving the engine at half its RPM range. Not to say that I don't love strong top end and no lag as well, but they are side effects of the displacement increase.

Forgive the ignorance, but is there a reason you'd rather do all of this custom, and I'm guessing costly, development rather than fit your basic 2JZ stroker? Can make the same displacement, gain variable cam timing out of the box (I thought) and cheaper?

Or do they not fit easily?

Genuine question, I'm a gtr lover, just wondering as you seem like a guy who does his homework so I'm guessing you've done the numbers.

Forgive the ignorance, but is there a reason you'd rather do all of this custom, and I'm guessing costly, development rather than fit your basic 2JZ stroker? Can make the same displacement, gain variable cam timing out of the box (I thought) and cheaper?

Or do they not fit easily?

Genuine question, I'm a gtr lover, just wondering as you seem like a guy who does his homework so I'm guessing you've done the numbers.

It all started with it being over 3000cc and looking stock.

Im guessing a 2JZ doesnt fit that category

Fitment is one of the main reasons I choose to develop the RB26. Retaining the AWD system with no modifications to do so is the first step in doing that.

I've never heard of someone using a 2jz in a GTR and retaining the AWD setup. It would be an interesting challenge but not one I'd want to try. It poses the same challenges as an RB30 conversion, except that the exhaust would foul on the steering as well. I've done the whole engine conversion thing before, and it just gets way too messy.

Another reason to use the RB26 block is that GTR's can undergo this modification without any need for a mod plate, and it fits a lot easier than an RB30. Also I believe that RB30's aren't able to be legally fitted to R34's in some states, as the RB30 stopped production in 1998, and the R34's are a 1999 manufactured car. Although I believe that many states have different rules regarding this too.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Latest Posts

    • So, version 4 intake is on its way I was looking at these a while ago but at around $200 or more it was a little pricey for something that might not work, but, I had it in my watch list, but, I got a message saying it was on special, and I had a code thingie to use, it eventually came in at $120 delivered, so BAM, BUY NOW.....LOL I'll need to have a look when it arrives but I feel it will "look" better than what I currently have, as it comes with a PCV fitting, so I will be able to get rid of the alloy pipe that goes to the throttle body with the PCV fitting  Well, that's what the voices in my head are telling me  Oh, and this happened today Yeap, it was a Trojan, and it was cheap, so I headed back to the hardware store and actually spent a little bit more on a heavy duty,  one that was actually recommended by a plumber mate, a Cyclone one with a fibreglass handle that is actually rated for clay The broken shovel will eventually be "modified" into a short handle shovel
    • When you pulled it off, there is no signs of blown head gasket? Is it possible you have some other issues going on? Possible cracked blocked? Or do you think it's straight up lifting the head? Did you check what the head was torqued to before pulling it down (To see if possibly they're stretching, or starting to break threads out etc)?
    • Seems like a decent result for a modded JZX110. They are bulky in comparison to the 100 and 90 models (which I'd prefer myself) but they are getting very few and far between here in JP these days. Thanks for the detailed review and the import process into the UK. I also have a car which I'm hoping to export from Japan at some stage so it's good to know if someone from the UK was interested in it. By the way the corrosion underneath is par for the course for cars which were located in/near the mountains or along the Japan sea coastline. They get huge amounts of snow every winter and the sodium chloride is used on the roads. Many cars have some kind of rubber like treatment underneath but they tend to limit it to the wheel arches underbody and fuel tank. Suspension arms and sub-frames will have similar corrosion to your JZX110 which is a common sight. See it all the time and car dealers here generally don't even mention it unless asked.
    • If the sound goes away when you clutch in, the 1.5/2 way diffs are just shit, and you are a normal person. The diff is likely "fine" but driving at anything under 30kmh is a violent horrible experience. It would be exaggerated with solid diff bushings and subframe bushings if you have those.
×
×
  • Create New...