Jump to content
SAU Community

Recommended Posts

I am going to convert from HKS F-Con V-Pro to Haltech Platinum PRO Plug-in for my 1999 GTR R34 V Spec

Trying to figure out the list of parts I needed to order from Haltech Online Store. Am I missing anything?

HT055006 - Platinum PRO Plug-in Nissan R34 (GTR ONLY) Skyline Kit

HT010104 - 3 Bar GM Manifold Absolute Pressure Sensor

HT010202 - Air Temp Sensor - Large Thread 3/8 NPT 18TPI

Haltech Boost Control Solenoid or GrimmSpeed Electronic Boost Control Solenoid

WBC1 - Single Channel CAN Wideband Controller Kit or Innovate MTX-L: Wideband Air/Fuel Ratio Gauge

Do I need the Haltech Part # HT040003 Expansion I/O Auxiliary Harness for Air Temp Sensor that will be installed at intercooler and the Boost Control Solenoid ?

Edited by etang789

The R34 GTR Pro Plugin has an internal MAP sensor which can read up to 22psi boost. Fitting a 3-bar map sensor will allow up to 30psi boost. Out of the box it can use the factory intake air temperature sensor as fitted to your RB26, or you can cut and extend the existing wiring from that sensor to a new sensor (can I recommend the 1/8NPT threaded sensors Haltech sells, they are compact and work great). If not, the additional sensor can be wired into one of the two available ATI inputs on the Aux port on the rear of the Haltech. The ECU comes with the required plug and pins to crimp onto your wiring.

The boost control solenoid can use the existing wiring already in the engine bay going to the stock solenoid. Cut and extend the wiring so it reaches your placement of the new solenoid as the factory position isnt ideal. Otherwise, again you can wire it separately.. One side of the boost solenoid to a DPO on the Aux port on the ECU, the other side to switched 12v (also found in the Aux port, theres a pinout diagram in the QuickStart guide that comes with the ECU, also in the ECU Manager software help pages)

The Haltech WBC1 CAN Wideband Unit communicates over CANBUS to the ECU, allowing the ECU to know real-time Wideband AFR readings from the included Bosch LSU sensor. It also communicates sensor health status, heater status and fault status, allowing the ECU to ignore the readings if they are bad, or the sensor is still heating up for example. A 3rd party wideband unit would be connected via an Analog 0-5v signal which is prone to failure, and lacks the intelligence of the CANBUS unit. You'll want the Dual-Sensor WBC2 kit if you've got twin-turbos.

If you have any more questions feel free to ask. :)

The R34 GTR Pro Plugin has an internal MAP sensor which can read up to 22psi boost. Fitting a 3-bar map sensor will allow up to 30psi boost. Out of the box it can use the factory intake air temperature sensor as fitted to your RB26, or you can cut and extend the existing wiring from that sensor to a new sensor (can I recommend the 1/8NPT threaded sensors Haltech sells, they are compact and work great). If not, the additional sensor can be wired into one of the two available ATI inputs on the Aux port on the rear of the Haltech. The ECU comes with the required plug and pins to crimp onto your wiring.

The boost control solenoid can use the existing wiring already in the engine bay going to the stock solenoid. Cut and extend the wiring so it reaches your placement of the new solenoid as the factory position isnt ideal. Otherwise, again you can wire it separately.. One side of the boost solenoid to a DPO on the Aux port on the ECU, the other side to switched 12v (also found in the Aux port, theres a pinout diagram in the QuickStart guide that comes with the ECU, also in the ECU Manager software help pages)

The Haltech WBC1 CAN Wideband Unit communicates over CANBUS to the ECU, allowing the ECU to know real-time Wideband AFR readings from the included Bosch LSU sensor. It also communicates sensor health status, heater status and fault status, allowing the ECU to ignore the readings if they are bad, or the sensor is still heating up for example. A 3rd party wideband unit would be connected via an Analog 0-5v signal which is prone to failure, and lacks the intelligence of the CANBUS unit. You'll want the Dual-Sensor WBC2 kit if you've got twin-turbos.

If you have any more questions feel free to ask. :)

Thanks for the quick reply

So that means I have to buy the Expansion I/O Auxiliary Harness.

I have twin turbo here, but I dont think there is much space before the turbo outlet joins. Because the dual wideband sensor are required to installed about 1 meter away from the turbo itself.

  • 1 month later...

The R34 GTR Pro Plugin has an internal MAP sensor which can read up to 22psi boost. Fitting a 3-bar map sensor will allow up to 30psi boost. Out of the box it can use the factory intake air temperature sensor as fitted to your RB26, or you can cut and extend the existing wiring from that sensor to a new sensor (can I recommend the 1/8NPT threaded sensors Haltech sells, they are compact and work great). If not, the additional sensor can be wired into one of the two available ATI inputs on the Aux port on the rear of the Haltech. The ECU comes with the required plug and pins to crimp onto your wiring.

The boost control solenoid can use the existing wiring already in the engine bay going to the stock solenoid. Cut and extend the wiring so it reaches your placement of the new solenoid as the factory position isnt ideal. Otherwise, again you can wire it separately.. One side of the boost solenoid to a DPO on the Aux port on the ECU, the other side to switched 12v (also found in the Aux port, theres a pinout diagram in the QuickStart guide that comes with the ECU, also in the ECU Manager software help pages)

The Haltech WBC1 CAN Wideband Unit communicates over CANBUS to the ECU, allowing the ECU to know real-time Wideband AFR readings from the included Bosch LSU sensor. It also communicates sensor health status, heater status and fault status, allowing the ECU to ignore the readings if they are bad, or the sensor is still heating up for example. A 3rd party wideband unit would be connected via an Analog 0-5v signal which is prone to failure, and lacks the intelligence of the CANBUS unit. You'll want the Dual-Sensor WBC2 kit if you've got twin-turbos.

If you have any more questions feel free to ask. :)

bump for help!

Where would you install the MAP sensor? Like the Apexi installation and drill at Cylinders #3 and #4 ?

You are going to need more than that to stop the map signal oscillation, I would join all the throttles with thin hose, then run it to a small chamber to dampen the pulses.

At least the Haltech has the ability to filter this to some extent.

You are going to need more than that to stop the map signal oscillation, I would join all the throttles with thin hose, then run it to a small chamber to dampen the pulses.

At least the Haltech has the ability to filter this to some extent.

So I should tap in the Balance Chamber? But I still uses the stock PCV valve, then where should I tap for MAP signal?

What Scotty is saying is to run six small tubes , one from each runner , into a small volume collector so that you get a more consistent manifold pressure reference signal .

You are basically mimicking what you have with a single throttle/plenum chamber inlet system but in small scale to get a usable - for the computer - pressure reference signal .

A .

What Scotty is saying is to run six small tubes , one from each runner , into a small volume collector so that you get a more consistent manifold pressure reference signal .

You are basically mimicking what you have with a single throttle/plenum chamber inlet system but in small scale to get a usable - for the computer - pressure reference signal .

A .

After chasing MAP faults on many cars, I now realise how important a smooth MAP signal is. Some sensors are more accurate (or faster) than others, which can make matters worse as the signal jumps all over the place, this can make your ecu drop into different cells constantly.

Where you tap the source from is critical, and anything you can do to smooth the pressure waves before the sensor will help the tuner no end. Even moving the map source around in a single plenum changes it's signal a fair bit. Furthest from the valves is best, but you don't get much choice on the 26, which is why I suggested a chamber.

  • 3 weeks later...

After chasing MAP faults on many cars, I now realise how important a smooth MAP signal is. Some sensors are more accurate (or faster) than others, which can make matters worse as the signal jumps all over the place, this can make your ecu drop into different cells constantly.

Where you tap the source from is critical, and anything you can do to smooth the pressure waves before the sensor will help the tuner no end. Even moving the map source around in a single plenum changes it's signal a fair bit. Furthest from the valves is best, but you don't get much choice on the 26, which is why I suggested a chamber.

So use something like this?

gvm100-t.jpg

http://www.goldeneaglemfg.com/index.php?main_page=index&cPath=78_90

Way back in the way backs (like last century) I participated in putting Motec onto an Alfa 2 litre. We drilled small tapping holes into the bottom of each runner and connected them via short ~4mm hoses to a ~1" diameter pipe that ran along under the 4 inlets. That size small bore tube passed the signal well, and because they were all short in length they didn't add random amounts of pneumatic delay to their pulses into the log. The log was big enough to smooth out the pressure fluctuations from 4 cylinders but not so big that id ruined the responsiveness of the pressure signal in there compared to what the engine was doing. We could probably have used a 1/2" diameter pipe as the common MAP plenum but this thing had fairly big cams and made almost no vacuum at idle. We had to give it more volume to smooth it out as much as possible.

The above pictured manifold block would probably work for a milder setup. You'd want to hang it under 3&4 and keep all the 6 lines to the 6 inlets as even in length as possible (and still as short as possible). If it wasn't smooth enough you could always add an extra volume on to the blanked off end port.

Oh...with ITB setups there is also a small concern about which way the throttle butterflies turn. If the throttles open in such as way that the flow is directed onto the tapping ports in the bottom of the runner, then you can get crazy changes in MAP signal as the air flow stagnates (turns velocity into static pressure) in the port openings. This can be a massive headf**k. It's OK if the throttles aim it that way so long as the tapping points are far enough downstream to not get the flow pointed directly onto them.

Edited by GTSBoy
  • Like 1

As said, you may need to play around with the volume to get a smooth signal, as averaging it with software will probably cause a delay in response similar to having a large volume.

I make these manifolds myself using brass fittings and an offcut of alloy plate.

  • 1 month later...

hey dude if your having dramas, ring trent from mercury motorsport. i purchased all my haltech gear through him, told hime what setup i wanted and he sorted me out with exactly what i needed. food for thought.

  • 8 months later...

Ok I finally got time to install the Haltech but I have ran into a few problems.

Previous install of the HKS F-Con V-Pro has hacked up the stock ECU wiring, there are a few wires that I am not sure what it does.

There is this Purple/Black wire 5th wire from the right of the HKS piggyback harness was cut and jam into a Black wire that runs all the way to the back of the car. Would you guys know what this is?

post-112082-0-75147600-1435717024_thumb.jpgpost-112082-0-69596200-1435717016_thumb.jpg

The stock wiring seems to be cut and reconnected with random wires.

post-112082-0-48685100-1435717035_thumb.jpg

Some quick help here would be great guys! Heres the pic with all the ECU together!

post-112082-0-21723400-1435717058_thumb.jpg

Edited by etang789

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Slow when hot could also be because its getting more dynamic compression, OR things are getting a bit tighter once it is all expanded. If it were an earthing issue, typically I'd expect you to have it have issues all the time. Unless it's really a combination of both things. Where the higher compression, and things being a bit tighter, is giving that bit of extra load and you do need a slight clean up on the cables/connections.
    • Yeah, this is one of the most annoying things about nissan part numbers... I've got an unrelated example... Image is of the AT output shaft ~ they have the same part#, but clearly the shaft on the left is beefier design to that on the right ...the difference (essentially) is the 'lighter' shaft on the right, is for engines up to RB25DE (this includes RB20 variants) : the shaft on the left is for RB25/26DET(T)....are they interchangeable? Yes...but obviously one shaft is going to be stronger than the other...and, the lighter shaft is around USD115, but the heavier shaft closer to USD150...same part#... ...epc-data usually tells a tale ~ the amayama listing for 39100-23U60 has a note "Longest side is between 60 and 105 cm" ; no such info is there for 39100-23U70 ...and given the great disparity in price between the 2 parts, it makes me at least curious (to the point of caution) where the 'extra money' went? ...ie; these 2 parts have a cost difference that (to myself at least) isn't explained by 'plastic boot'...ie; with amayama there's AUD700 price difference ...plastic versus rubber?...I'm not seeing it like that...and 60cm ~ 105cm...??...that's a huge disparity....something hinky going on here... I'd try searching by VIN, not model... /2cents
    • I don't know for sure, but I'd expect them all to be interchangeable given the diff end and hub end don't move/change between any C34 series. Often Nissan will change part numbers and the aftermarket follows those year ranges; but the original part number change doesn't mean other parts won't fit. The change could be a change in material, internal parts or even just supplier. For example, all the RB gearbox to engine bolts are no longer available and there is a new part number instead. The only change is they went from cadmium plated bolts to zinc plated due to the issues manufacturing with Cadmium. They look different but work the same.
    • One year is a bit concerning. Did you try contacting GSP? It says 5 year warranty on the box if I remember correctly. I'm also running their driveshafts on my S2 Stagea.   You could check the part numbers on Amayama for your year. Here's the link for my 1998 which gives the 39100-23U60 part number. Well, that and 39100-23U70. https://www.amayama.com/en/genuine-catalogs/epc/nissan-japan/stagea/wgnc34/6649-rb25det/trans/391 What does it say for yours?
    • I ordered a GSP Front R/H Axle from here - https://justjap.com/products/gsp-premium-front-driveshaft-r-h-nissan-r32-r33-r34-skyline-gtr-stagea-4wd#description It lasted around a year before one of the boots blew out. I'm lowered, but I have GKTech roll center adjusters. One year seems a little premature. I think I'm going to spend the extra money on an OEM cv axle this time. This website - https://tfaspeed.com/collections/nissan-stagea-wgnc34-x-four-parts/products/nissan-stagea-awc34-260rs-rb26-right-front-axle-drive-assembly Makes it sound like the readily available OEM CV axle will only fit 11.1999 Stagea and up (mine is a 2.1997 S1). The JustJap listing didn't mention any years or anything for the GSP axle. Amayama shows '11.1999' and up as well for that part number. As well as 'plastic boot type'. See attached picture. So I guess my question is, does that axle (39100-23U60) really only fit S2 Stagea? It's the front driver side. If it does, I'd love to buy that instead of rolling the dice on another GSP. I've found that OEM one cheaper here: https://www.partsfornissans.com/oem-parts/nismo-jdm-r32-r33-r34-skyline-gtr-r32-gts4-right-front-axle-3910023u60 and here https://www.nissanparts.cc/oem-parts/nismo-shaft-ft-drive-3910023u60 Just a little confused because the JapSpeed listing for the GSP front driver axle doesn't mention any specific years or anything and it fit my S1 Stagea fine. So will 39100-23U60 fit my S1 Stagea even though technically it says '11.1999' and up? What would have changed? Thanks.  
×
×
  • Create New...