Jump to content
SAU Community

Return Flow Intercooler Vs Regular Front Mount Intercooler Question


yoshiii335
 Share

Recommended Posts

Yes but some how your SS2 is god like haha

I still don't understand how you managed to make 324kw on 16psi, it's just insane.

Depends which turbine wheel it has, Tao is using near GT35 sized wheels in the SS2 these days so I would expect it to flow well.

Link to comment
Share on other sites

I went ATR45SAT from Stao - Supposed to perform well on restrictive systems. I ended up buying a different actuator though so I can get it down to lower boost pressures. The actuator that comes on it is a 20PSI one and I doubt the stock motor would be very happy with that.

Link to comment
Share on other sites

  • 2 weeks later...
  • 2 months later...

I went ATR45SAT from Stao - Supposed to perform well on restrictive systems. I ended up buying a different actuator though so I can get it down to lower boost pressures. The actuator that comes on it is a 20PSI one and I doubt the stock motor would be very happy with that.

stock motor loves boost (when fitted with proper head studs)

spent all Sunday abusing my car at Wakefield in 40 degree heat and then drove home. Motor still pumping on!

  • Like 2
Link to comment
Share on other sites

Is there anybody who has tested/used the pwr r34 intercooler. I'ts also a return flow setup but i gues, that a brand like thid will not make something that will give flow restrictions, at least not at that price ...

This is the one I mean: https://www.pwr.com.au/wp-content/uploads/PWI2204-Skyline-R34-GTS.jpg

As I have said before, it does not matter how good the core is when the end tanks (well, mainly the return flow end) suck testes.

Link to comment
Share on other sites

Nah, don't think that's the problem because a turn wil not let drop you pressure, the core himself gives a lot more resistance then a turn in a decent diameter could do. You see lots of people who fabricate there own return flow'ish piping with a 180 degree radius directly after the cooler, so that should give you the same issue then a turn Built in the end tank ... Not talking about the phenomen that the isue is mush bigger on a neo engine

Link to comment
Share on other sites

Nah, don't think that's the problem because a turn wil not let drop you pressure, the core himself gives a lot more resistance then a turn in a decent diameter could do. You see lots of people who fabricate there own return flow'ish piping with a 180 degree radius directly after the cooler, so that should give you the same issue then a turn Built in the end tank ... Not talking about the phenomen that the isue is mush bigger on a neo engine

Hks made one with the 180 bend. I was going to make one and did a bit of work and was very easy to do. The only problem was it was either too low or it sat against the radiator.

I honestly can't see or have found a good explanation on why a return flow is a restriction.

Link to comment
Share on other sites

I'd believe GTSBoy... But if you need more info. This page has more info than you could ever want on intercoolers.

http://www.are.com.au/techtalk/intecoolersMR.htm

My new intercooler is an ARE, given the information they've put together on that page, they clearly know what they're talking about.

Link to comment
Share on other sites

Ok rhen you'll be kowinng what you're saying :-p

But i personaly don't see the the difference, can you explain why you're not having the same isue if you're fabricating a 180 degree turn directly after the end tank. Because of you look at the blitz, it's just like they have 'welded/extruded' the turn just after they bring the air together in the end tanks.

Link to comment
Share on other sites

It's not so much the 180deg bend as it is that it turns on such a tight radius, if the 180deg bend was around a 300mm radius the issue wouldn't be so bad but most return flow intercoolers have the 180deg bend inside a 100mm radius which with air volume and velocity trying to get the air to change direction causes turbulance which creates a high pressure area inside the bend that restricts flow

A crap cooler core runner entry design will also add to the issue

Now I'm only a machine opertator so that might be wrong but that's my understanding of it

  • Like 2
Link to comment
Share on other sites

^ This is pretty much it. It's not just the tight radius. At least with a bend to make the equivalent of a return flow cooler, it is made out of pipe, so has a smooth pipe to flow around the 180. The exit from a typical return flow tank is just shocking, basically just a 90° sharp corner off the end of the tank, and that's after the air has already had to turn 90° off the end of the tubes.

On top of that, the core is only ~75% the height of a full cooler because the return pipe either goes above or below the core. So you will run a higher pressure drop across the core itself at any given power level.

Don't get me wrong, I don't have a vendetta out against return flow coolers. I have one on my car and have done so since last century. Just pointing out that there are real reasons why they will hit the wall before a normal cooler will.

  • Like 2
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
 Share




  • Similar Content

  • Latest Posts

    • Embrace the freedom of casual encounters on the best dating app in town! Verified Maidens Superlative Сasual Dating
    • Slimline sub on the rear parcel shelf is doable. Pioneer TS-WX140DA is only 70mm high.   
    • People like Johnny Dose Bro might be laughing at my post because I accidentally added 100mm to my numbers. 350-355 is indeed the lower limit. 450 is off-road Skyline spec.
    • What is the "compromise" that you think will happen? Are you thinking that something will get damaged? The only things you have to be concerned about with spherical jointed suspension arms are; Arguments with the constabulary wrt their legality (they are likely to be illegal for road use without an engineering certificatation, and that may not be possible to obtain). A lot more NVH transmitted through to the passengers (which is hardly a concern for those with a preference for good handling, anyway). Greatly increased inspection and maintenance requirements (see above points, both).   It is extremely necessary to ask what car you are talking about. Your discussion on strut tops, for example, would be completely wrong for an R chassis, but be correct for an S chassis. R32s have specific problems that R33/4 do not have. Etc. I have hardened rubber bushes on upper rear control arms and traction rods. Adjustable length so as to be able to set both camber and bump steer. You cannot contemplate doing just the control arms and not the traction arms. And whatever bushing you have in one you should have in the other so that they have similar characteristics. Otherwise you can get increased oddness of behaviour as one bushing flexes and the other doesn't, changing the alignment between them. I have stock lower rear arms with urethane bushes. I may make changes here, these are are driven by the R32's geometry problems, so I won't discuss them here unless it proves necessary. I have spherical joints in the front caster rods. I have experienced absolutely no negatives and only positives from doing so. They are massively better than any other option. I have sphericals in the FUCAs, but this is driven largely by the (again) R32 specific problems with the motion of those arms. I just have to deal with the increased maintenance required. Given how much better the front end behaves with the sphericals in there.....I'd probably be tempted to go away from my preference (which is not to have sphericals on a road car, for 2 of the 3 reasons in the bulleted list above), just to gain those improvements. And so my preference for not using sphericals (in general) on a road car should be obvious. I use them judiciously, though, as required to solve particular problems.
    • Easiest way to know is to break out the multimeter and measure it when cold, then measure all the resistances again once it gets hot enough to misfire. Both the original ignitor and the J Replace version. Factory service manual will have the spec for the terminal measurements.
×
×
  • Create New...