Jump to content
SAU Community

Recommended Posts

That's an awesome result for the SS3! Anyone wanna compare that to a Kando graph? Looks like similar power but less lag? (going by my not so reliable memory)

If you don't mind telling me what people these electric turbos will be marketed towards?

Because I swear it's better/ more satisfying just having a turbo car

I believe the primary intention is to use it with a 600+ HP turbo and feel like it has no lag. Like a cheaper less complex compound system.

And yes that SS3EG looks epic! The price is great too!

I believe the primary intention is to use it with a 600+ HP turbo and feel like it has no lag. Like a cheaper less complex compound system.

And yes that SS3EG looks epic! The price is great too!

Only problem is, for such a large unit it is only making 1psi +ve pressue

A good ram air system can do that

1psi = 2.036"hg

so if it is going from -5 on the boost bauge (most boost gauges read vacuum in InHg) it has made 7InHg difference

My feeling is, that if you took the electric blower out of the intake and ran the car with just an intake pipe the difference would be even less.

Stao, have you thought about using a compressor out of a centrifugial supercharger? They are designed to use less shaft RPM to flow the air.

If you can get the electric blower to move a heap of air at low shaft rpm you could be onto a winner

Problem is, if you can't find a way to refuel the batteries running the electric blower, then it's just a charge and use system...like meth/water injection, or NOS...only less efficient. And the latter of which I thought was already used to combat lag in big turbo setups?

half the reason it looks epic is cause its an ex gate..

So is the Kando I'm comparing it to :ninja:

Stao, have you thought about using a compressor out of a centrifugial supercharger? They are designed to use less shaft RPM to flow the air.

Actually, your on a good track here......

Stao, why dont you produce a belt driven suppercharger and setup a twin charge system? If you made an affordable kit you might actually do really well from it. I think what your doing now is on a similar sort of track, you just need the gearing.

Hey if it worked and was a bolt on to my motor (im SR but hello RB25 SAU) I would definitely buy it and run it with a much larger turbo. Hell, you could supply both.

No there is no lag in the electric system. The eturbo spools up and reaches surging point straight way. The key to this is not all RPMs it needs torque. I'm looking to buy an higher powered motor soon. hopefully that can make 3~5psi.

No there is no lag in the electric system. The eturbo spools up and reaches surging point straight way. The key to this is not all RPMs it needs torque. I'm looking to buy an higher powered motor soon. hopefully that can make 3~5psi.

Belt drive... Compound turbo....

Agree^

If you can compound it...so run a belt drive from engine to a gearbox that multiplies RPM for the turbo shaft. On the engine side of things, have an A/C compressor style clutch that disengages electronically at a certain RPM, where exhaust gases take over...is there a reason this wouldn't work?

Actually I wouldn't mind a centrifugal blower setup by itself just to be different, however inefficient it may be compared to a turbo...is this something you could produce Stao?

Agree^

If you can compound it...so run a belt drive from engine to a gearbox that multiplies RPM for the turbo shaft. On the engine side of things, have an A/C compressor style clutch that disengages electronically at a certain RPM, where exhaust gases take over...is there a reason this wouldn't work?

Actually I wouldn't mind a centrifugal blower setup by itself just to be different, however inefficient it may be compared to a turbo...is this something you could produce Stao?

Thats how it works for all the factory twin charged cars :)

Yeah, except that centrifugal superchargers that are belt driven from the engine don't make any boost at low revs. They need some shaft speed under their belt to make any boost at all, and only make their max boost at the fastest shaft speed. Which is a bit gay for a super-turbo compound setup, because what you really want is for the supercharger to be making boost instantly at the bottom of the rev range, which then leads on to all the benefits that you actually want from the system (which is more off idle torque, reduced pressure ratios across each stage of the compression setup, larger rear housing on the turbo stage to reduce back pressure and reversion and all that, etc, etc, etc).

The only way this discussion makes sense is if you get;

  1. A belt driven geared up electric supercharger that switches off and out of the flow circuit once the real turbo is up to speed (so, sequential really, but it could start out as compound series, and when it switches off and out the main turbo becomes conventional).
  2. A belt driven lobed blower in normal series compound arrangement with the turbo, a la what Stockymcstock did. Packaging all that stuff into the engine bay is a pain in the arse though.

Im sure a really well designed compressor with appropriate gearing could start boosting at a decent RPM and not go into surge or start blowing hot air by redline.

The idea is to compress compressed air anyway, so as long as the compressor doesnt surge or blow hot it just needs to keep compressing what the turbo is giving once its out of its efficiency range. So it should be fairly doable in my mind.

its more or less like this:

intake - big turbo inlet, big turbo outlet - supercharger inlet, supercharger outlet to intercooler and so on. The idea is to help the big turbo spin up sooner. The main restriction in a compound setup is the small housing on the small turbo, but thats a null point in this case.

Should be fun if Stao takes it on board.

Thats how it works for all the factory twin charged cars :)

I see. I always thought twin charged was done as seperate units, i.e. a blower atop the engine, fed by a turbo further down the plumbing, rather than combined into one housing.

Examples of factory twin charged cars?!?

I see. I always thought twin charged was done as seperate units, i.e. a blower atop the engine, fed by a turbo further down the plumbing, rather than combined into one housing.

Examples of factory twin charged cars?!?

Nissan March Super Turbo

The Lancia Delta's

there are a few others but cant think of them right now

Why not just use compressed air from a compressor to spool..

Would be as simple as plumbing a nozzle into the turbine (and or compressor) and having a solenoid rigged to open at desired rev range to keep turbo always on positive boost..you could even rig it so that the solenoid opens whenever turbo hits negative..

Seems pretty simple to me now you guys tell me why it won't work...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Ha, well, it's been.... a bit of a journey. Things have taken much longer than I'd hoped. I'll probably put up a thread at some stage. Hopefully soon. The car's not done any kms since my update in June though, put it that way.
    • Here's the chart for fuel pressure vs. current draw, assuming your base fuel pressure is 3 bar and you run like 0.5bar boost on WOT, you should only momentarily hit 9amps here and there. (Ignore my prev post, I cannot read a chart these days it seems)
    • Those comp test results are not hideous. Whether they are accurate or not (ie, when that comp tester says 140 psi, is the real pressure120, 140 or 160?) is unknown to us. The state of the battery used to crank it over is unknown, etc etc. Many people around here would say that the absolute values and the spread are perfectly fine to just add boost and keep going. I personally would be happier with a narrower spread than that, but even the diff between 125 and 145 is not terrible. That one cylinder at 125 though, has probably copped some damage relative to the others. You should inspect the valves seeing as you've got it open. Do you know how to measure installed ring gaps? That, and an inspection of the rings themselves, is how you will determine whether they need to be replaced. If you're not good to do these things, take the block and the pistons and rings to a shop that is, and ask them for the go/no-go on them. Do the bores need a hone at all? If so, you might well be justified in getting some different pistons in order to get away from the ring supply problem. Whether you're happy to spend a lot more money right now, on more gear, rather than less money, but an amount that looks stupid given that you will only get a handful of rings in exchange for that money, is for you to decide.
    • also possibly backed up to my filler and shat down it! 🤣
    • Ok so i would love some advice here please, i purchased an R33 a few months back and its had a few mods done to the engine, its an RB25det running a Master ECU, 1200cc injectors, bigger turbo, oil cooler, oil filter relocation kit, Spool H-beam rods, acl/ross pistons. When i removed the motor from the vehicle (as its getting a respray) i thought i would compression test it and these are the following results. Cylinder 1-145psi, Cylinder 2-143psi, Cylinder 3-125psi, Cylinder 4-145psi, Cylinder 5-140psi, Cylinder 6-135psi this test was done with the motor on the ground and powering up the starter motor. I dropped the sump and found broken oil squirters on cylinder 3,5 and 6. I was told my rings are probably worn so i stripped the motor completely to get a new set of rings for it. The trouble is no one has these rings anywhere and they have to be custom made by Ross over in the states and will cost about $600+$200 delivery. My question is how can i tell if my rings are at fault and if they are still ok and is this price ok for a set of rings?
×
×
  • Create New...