Jump to content
SAU Community

Recommended Posts

  • Replies 54
  • Created
  • Last Reply

Top Posters In This Topic

I have one sitting on my workbench, it's definitely nylon or some kind of plastic. It blades certainly feel like plastic, they are even a bit bendy! And due the thinness of the leading edge of the blades you can actually see tiny indents in the plastic itself.

Mafia - they are really Nylon - i know it doesnt seem likely but I have swapped my stock turbo with another one plus seen a whole bunch of others at the wrecker first hand and in this case the internet is correct - take a look at one if you can and you will see that it is really some sort of black plastic.

I will have my turbo off in around 1 week and will happily post a photo of the compressor.

So you're just going from what the internet says, with nonform of confirmation, or have you actually touched one, and inspected one closely?

You obviously haven't. You also obviously don't realise how much stress a compressor wheel has to endure.

But then, going by your comments, they shouldnt believe what your saying either because its on the internet too. hehehe.

Is it possible that there was some uber new nylon composite created that does work? They had to change ball bearings to work in turbos because normal ones would explode under the conditions too.

Everything i have ever read, bar what you have just said, has stated that the stock compressor is a nylon composite thingy too. Not that i care.. i threw mine away already :D

It's an alloy. How can you spin nylon at 100,000rpm and have it not flex, warp, or fly to pieces?

Bulletproof vests? They're made from Kevlar, which is an aramid synthetic fibre. Stops bullets.

Lexan? Another polycarb resin thermoplastic. Used as aircraft canopies, space suit visors and.... bulletproof windows.

Tweeters? That's right, fully sick speakers capable of up to 65,000 Hz in response can be partially made from... you guessed it. Plastic. Polyethylene terephthelate to be precise. And to put that frequency into perspective, it's 3,900,000 RPM (or more correctly, Oscilliations Per Minute). It's also the same stuff that your coke bottles are made of; PET.

Annealed 6061-O Aircraft Grade Aluminium has a maximum tensile strength of 125 MPa. While polyamide-amide has a maximum tensile strength of 152 MPa. In the late 1980's Ford Motor Co. went on to build a plastic engine that produced 318BHP at 11,000RPM and redlined at ~14,000RPM. It only weighed 69kg's, as opposed to it's all-iron original of 188kg's. The only metal parts in the engine were metal cylinder sleeves, metal combustion chamber tops, metal piston crowns, bearings, valves and seats, and a stock 2.3L Pinto crankshaft. Nearly everything else in the engine, including the block, rods and piston skirts were made of Torlon thermoplastics - a polyamide-amide. Although that engine never went into a vehicle, Cosworth built a plastic engine based on the Cosworth BDA that weighed 78kg's. Plastic parts included the engine block, cam cover, air intake trumpets, intake valve stems, piston skirts and wrist pins, connecting rods, oil scraper piston rings, tappets, valve spring retainers and timing gears. The T616 HU04 car raced for two season, and finished with a best position of 3rd in class at the 1985 Road America 500.

Twin Turbo 3rd-Gen RX-7's had an abradeable lining on the compressor wheel to aid in creating a perfect seal to maintain compressor efficiency after thermal and centrifugal expansion. Jet engines also use the same technology.

There are countless instances in the world around us where plastics are doing some amazing things. Especially when you consider what we had 40 years ago. Plastics can be engineered to make use of the covalent bond between every single molecule, and as a general rule, covalent bonds are much stronger than metallic bonding. There are plastics that offer strength comparable to alloys while offering characteristics such as self lubrication, wear resistance, reduced weight and chemical resistance, which metals cannot offer. So take all this on board, and try to accept the fact that all my fun comes from a little nylon compressor wheel boosting me around...

Or we could all man up and buy a real turbo ie: something that you can definitely say "That shit aint plastic". I have a profound sense of relief now, knowing that I can boost my turbo to 25psi and beyond and not have it blow to pieces. Instead the worry has turned to the engine blowing itself to pieces when the turbo gets turned up to 25 psi and beyond.....

Ha ha im new to these forums but iv read alot of threads where "the mafia" gets shot down because his opinions are different to everyone else's

Anyway i called MTQ and they confirmed my turbo is high flowed, too bad the standard ecu hates it

Edited by Slattery Gts-t

Well Nathan, we're all walking the modified car path. But not all of us are as far ahead as you. The OP could have a highflowed turbo, so he's on the right track.

Yep you are right. I was being slightly sarcastic with my comment before. I guess that's hard to portray online. Nothing wrong with a highflow. I would have done it myself except I am chasing more power. biggrin.gif Hey I'm not that far ahead anyway. I only bought my car in March this year.

Not having a go at The Mafia but some of the stuff he says to people and the way he comes across sometimes is tactless. I think that conversation on here should be no different than face to face. I guess as long as your not name calling etc then it doesn't really matter what you say or how you come across tongue.gif

Out of the few series 2 and gtt turbos I've seen, theyve certainly looked steel to me. Even my 1996 was a steel wheel turbo. And it was all original. Had the jap papers to prove it.

And thats hardly the case slatterly - did you read a few threats where some wanker like yourself has posted for the 35,547th time that his car stalls because he's installed a bov on a system that wasn't meant to leak just to sound cool?

As I said, I've seen many gts-ts and gtts and never seen a plastic compressor. Either someone is playin tricks on me or it's just luck that some were steel.

Lol mafia I have seen one and yes it is some form of nylon/plastic, just because you haven't touched one doesn't mean they don't exist. As mentioned above there are plenty of synthetic materials that can be made with very high strengths.

Maybe try talking to people with some respect instead of carrying on screaming all the time and people won't jump at an opportunity to troll you.

Edited by Rolls

Lol mafia I have seen one and yes it is some form of nylon/plastic, just because you haven't touched one doesn't mean they don't exist. As mentioned above there are plenty of synthetic materials that can be made with very high strengths.

Maybe try talking to people with some respect instead of carrying on screaming all the time and people won't jump at an opportunity to troll you.

Haha +1 to all of that

Bulletproof vests? They're made from Kevlar, which is an aramid synthetic fibre. Stops bullets.

Lexan? Another polycarb resin thermoplastic. Used as aircraft canopies, space suit visors and.... bulletproof windows.

Tweeters? That's right, fully sick speakers capable of up to 65,000 Hz in response can be partially made from... you guessed it. Plastic. Polyethylene terephthelate to be precise. And to put that frequency into perspective, it's 3,900,000 RPM (or more correctly, Oscilliations Per Minute). It's also the same stuff that your coke bottles are made of; PET.

Annealed 6061-O Aircraft Grade Aluminium has a maximum tensile strength of 125 MPa. While polyamide-amide has a maximum tensile strength of 152 MPa. In the late 1980's Ford Motor Co. went on to build a plastic engine that produced 318BHP at 11,000RPM and redlined at ~14,000RPM. It only weighed 69kg's, as opposed to it's all-iron original of 188kg's. The only metal parts in the engine were metal cylinder sleeves, metal combustion chamber tops, metal piston crowns, bearings, valves and seats, and a stock 2.3L Pinto crankshaft. Nearly everything else in the engine, including the block, rods and piston skirts were made of Torlon thermoplastics - a polyamide-amide. Although that engine never went into a vehicle, Cosworth built a plastic engine based on the Cosworth BDA that weighed 78kg's. Plastic parts included the engine block, cam cover, air intake trumpets, intake valve stems, piston skirts and wrist pins, connecting rods, oil scraper piston rings, tappets, valve spring retainers and timing gears. The T616 HU04 car raced for two season, and finished with a best position of 3rd in class at the 1985 Road America 500.

Twin Turbo 3rd-Gen RX-7's had an abradeable lining on the compressor wheel to aid in creating a perfect seal to maintain compressor efficiency after thermal and centrifugal expansion. Jet engines also use the same technology.

There are countless instances in the world around us where plastics are doing some amazing things. Especially when you consider what we had 40 years ago. Plastics can be engineered to make use of the covalent bond between every single molecule, and as a general rule, covalent bonds are much stronger than metallic bonding. There are plastics that offer strength comparable to alloys while offering characteristics such as self lubrication, wear resistance, reduced weight and chemical resistance, which metals cannot offer. So take all this on board, and try to accept the fact that all my fun comes from a little nylon compressor wheel boosting me around...

This is the most accurate post I have seen on these forums for a long time.

Mafia, I know you don't like to believe stuff you read on the internet, but how about scholar articles, do they count? http://www2.dupont.com/Automotive/en_US/assets/downloads/nylon_under_hood.pdf

I have seen Nylon used in stressful conditions first hand, my dad owns a Stemme 10 VH-GTS motorglider:

stemme-3.jpg

The propeller on this glider is made of nylon composite, and reaches speeds during take-off of over 200,000rpm. During mid-air cruising use, the propeller generally operates at around 80,000rpm, and will happily spin at over 200,000rpm for hours. The only reason it doesn't is because the engine uses so much fuel to keep it spinning at those speeds, as well as the engines tendency to overheat due to being air-cooled. The longest recorded flight time is 14hrs, though that involved a lot of time as a pure-glider with the prop folded away. Dad and myself have personally flown to Broome in this glider, which was over 11 straight hours of the prop being operated at around 80,000rpm.

There are also nylon components in the fuselage of the glider, as well as the motor (for obvious reasons, being lightweight is incredibly important for these things). The con-rods and valve-stems being the ones under most stressful conditions, but also the exhaust and intake manifolds and some other parts.

I doubt the prop turns at 200,000rpm, the rotax 914 has a max crank rpm of 5800 (limited to max 5 mins) and an internal reduction gear of 1:2.273.

turning a prop at 200,000 rpm just isnt going to happen. That is way beyond supersonic. Also has a 2 speed prop.

Maybe you are confused with the 50:1 glide ratio, whih means for 1 ft drop in altitude you travel forward 50ft

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Update 3: Hi all It's been a while. Quite a lot of things happened in the meantime, among other things the car is (almost) back together and ready to be started again. Things that I fixed or changed: Full turbo removal, fitting back the OEM turbo oil hardlines. Had to do quite a bit of research and parts shopping to get every last piece that I need and make it work with the GT2860 turbos, but it does work and is not hard to do. Proves that the previous owner(s) just did not want to. While I was there I set the preload for the wastegates to 0,9bar to hopefully make it easier for the tuner to hit the 370hp I need for the legal inspections that will follow later on. Boost can always go up if necessary. Fitted a AN10 line from the catch can to the intake hose to make the catchcan and hopefully the cam covers a slight vacuum to have less restrictive oil returns from the head and not have mud build up as harshly in the lines and catch can. Removed the entire front interior just shy of the dashboard itself to clean up some of the absolutely horrendous wiring, (hopefully) fix the bumpy tacho and put in LED bulbs while I was there. Also put in bulbs where there was none before, like the airbag one. I also used that chance to remove the LED rpm gauge on the steering column, which was also wired in absolute horror show fashion. Moved the 4in1 Prosport gauge from sitting in front of the OEM oil pressure gauge to the center console vents, I used a 3D printed vent piece to hold that gauge there. The HKB steering wheel boss was likely on incorrectly as I sometimes noticed the indicator reset being uneven for left vs. right. In the meantime also installed an airbag delete resistor, as one should. Installed Cube Speed premium short shifter. Feels pretty nice, hope it'll work great too when I actually get to drive. Also put on a fancy Dragon Ball shift knob, cause why not. My buddy was kind enough to weld the rust hole in the back, it was basically rusted through in the lowermost corner of the passenger side trunk area where the wheel arch, trunk panel and rear quarter all meet. Obviously there is still a lot of crustiness in various areas but as long as it's not rusted out I'll just treat and isolate the corrosion and pretend it's not there. Also had to put down a new ground wire for the rear subframe as the original one was BARELY there. Probably a bit controversial depending on who you ask about this... but I ended up just covering the crack in the side of the engine block, the one above the oil feed, with JB Weld. I used a generous amount and roughed up the whole area with a Dremel before, so I hope this will hold the coolant where it should be for the foreseeable future. Did a cam cover gasket job as the half moons were a bit leaky, and there too one could see the people who worked on this car before me were absolute tools. The same half moons were probably used like 3 times without even cleaning the old RTV off. Dremeled out the inside of the flange where the turbine housing mates onto the exhaust manifolds so the diameter matches, as the OEM exhaust manifolds are even narrower than the turbine housings as we all know. Even if this doesn't do much, I had them out anyways, so can't harm. Ideally one would port-match both the turbo and the manifold to the gasket size but I really didn't feel up to disassembling the turbine housings. Wrapped turbo outlet dumps in heat wrap band. Will do the frontpipe again as well as now the oil leak which promted me to tear apart half the engine in the first place is hopefully fixed. Fitted an ATI super damper to get rid of the worn old harmonic balancer. Surely one of the easiest and most worth to do mods. But torquing that ARP bolt to spec was a bitch without being able to lock the flywheel. Did some minor adjustments in the ECU tables to change some things I didn't like, like the launch control that was ALWAYS active. Treated rusty spots and surface corrosion on places I could get to and on many spots under the car, not pretty or ideal but good enough for now. Removed the N1 rear spats and the carbon surrounding for the tailpipe to put them back on with new adhesive as the old one was lifting in many spots, not pretty. Took out the passenger rear lamp housing... what do you know. Amateur work screwed me again here as they were glued in hard and removing it took a lot of force, so I broke one of the housing bolts off. And when removing the adhesive from the chassis the paint came right off too. Thankfully all the damaged area won't be visible later, but whoever did the very limited bodywork on this car needs to have their limbs chopped off piece by piece.   Quite a list if I do say so myself, but a lot of time was spent just discovering new shit that is wrong with the car and finding a solution or parts to fix it. My last problem that I now have the headache of dealing with is that the exhaust studs on the turbo outlets are M10x1.25 threaded, but the previous owner already put on regular M10 nuts so the threads are... weird. I only found this out the hard way. So now I will just try if I can in any way fit the front pipe regardless, if not I'll have to redo the studs with the turbos installed. Lesson learned for the future: Redo ALL studs you put your hands on, especially if they are old and the previous owners were inept maniacs. Thanks for reading if you did, will update when the engine runs again. Hope nothing breaks or leaks and I can do a test drive.
    • No those pads are DBA too  but they have colors too. I look at the and imo the green "street" are the best.
    • I’m not sure what happened I told them about sonic tunes free OTS tune and the next the I know .. I was booted..   To funny 
    • Yea - I mean I've seen my fuel pump which is decades old and uh, while I'm not saying this with real knowledge... but I sure get the ick at using anything in the fuel system that produced the state of that pump. Many years ago I went through multiple pumps (and strainers) before I dropped the tank to clean it out with extreme violence. I'm talking the car would do maybe 50km before coming to a halt, which resulted in me cleaning out the filter with some brake cleaner and going on my way. None of my stuff ever looked like what came out of your fuel tank. I don't think I'd be happy with it unless every single component was replaced (or at least checked/cleaned/confirmed to be clean here).
    • I'm not going to recommend an EBC pad. I don't like them. Just about anything else would suit me better. I've been using Intima pads for a while now.
×
×
  • Create New...