Jump to content
SAU Community

Recommended Posts

Hey guys, After a little advice on my intake temperatures.

Few months ago installed an MFD into my R34 GTT. I used the stock GTR sensors for Exhaust and Intake. Now my car has a Blitz Return flow FMIC. To install the intake temp sensor, I drilled a hole in the "return" pipe up near where it couples to the engine bay piping and mounted it there.

So tonight is about, 10 or so degrees outside. From cold start, the intake temp on the MFD reads about 15 or so. Driving around a bit, usually gets it up to about 25-35 degrees, depending on the situation. Tested with a little more throttle and if boosting for a while it got up to 80 or so degrees. That seems quite high to me.

Thinking about it, the turbo is sucking air in through the intake (stock airbox), "compressing it", running it out and through the I/C, and back to the throttle body. So i assume it's going to be hotter when on boost, as the turbo is hot, so it'll be heating the fresh air charge. But that hot? The air that the intake plenum is seeing is 80 degrees that means. Seems too high. What would cause such a high temp?

Cheers, Kurt

Link to comment
https://www.sau.com.au/forums/topic/430478-rb25-neo-intake-temperature/
Share on other sites

If you can, put a temp sensor in the pipe upstream the intercooler. In fact, make sure you haven't installed your existing temp sensor upstream the intercooler!! What turbo are you running, how much boost? Do you have a multimeter with a thermocouple, or access to some similar alternative temperature measurement device? If you do have something that can read thermocouples, then you can buy a few bare thermocouples from an industrial temp measurement company (there's a few around) for a few bucks and you can bodgily install them by putting them into the joins between intercooler pipes and the rubber hose joiners. With a bit of care they will work, although you do stand a chance of breaking them while putting it together or pulling it back apart. Useful for checking temps on a temporary basis.

What is the air flow situation around your intercooler? Any helpful ducting? Anything there that will interfere with ambient cross flow?

Yes, especially the GTR style solid screw in style of sensor. If you look at the aftermarket bosch style sensor it has vents and a small bulb which is isolated from the piping, this is what most people use for aftermarket intake air temp sensors on standalone computers.

post-63525-0-66701300-1376919724_thumb.jpg

Thanks for the replies guys, really good info. GTSBoy, AFAICT there is no anomalies in the intercooler setup in terms of flow or restriction issues. It's a fairly standard type install, nothing out of the ordinary. The car runs great and doesn't feel doughy really at all.

I got the GTR sensor because I knew it would function with the MFD correctly. Easy enough to change, but i'd have to check up on the resistances and compare to see if the MFD could interpret it correctly.

The piping heat soak issue is a really valid point. After a long drive, you would indeed expect the surround metal to influence the value. The way I have this installed isn't exactly like the GTR, mines just in the pipe. The GTR has it on a flat boss section on the output of the cooler. So it could indeed be picking up soak from the metal.

To be really sure you need to test the temperature pre intercooler and post intercooler, even if the value is wrong at least you'll see a percentage drop knowing everything is working.

If you can get a proper pt100 sensor and datalogger you can then see what the real temperature is, need to check the specs to see what the lag time is though, they might not respond fast enough to be accurate.

Edited by Rolls

Im not sure heatsoak is your issue. Id say its the sensor.

Mine is mounted by the throttle body in my R33, so its sitting ontop of the engine and i never see anything near temps like that bar idling for long periods of time. And even then, bringing the revs up even in neutral will drop the temps by 30 degrees in a few seconds.

Well that might be my issue then. You'd think Nissan could have made an accurate system to begin with! Only reason I got this sensor was because I knew it would interface with the MFD correctly. I wonder how installing an aftermarket sensor would go. Keep in mind that this is being displayed on an MFD, I wonder if the MFD itself is at partial fault in the way it interprets it? Really at the mercy of the electronics in this situation ai. As stated, the only way to really know is to install a proper accurate sensor and logger and check, at least to give an indication that it's "working as it should". I'd expect the engine to not being running correctly (detonation, doughy feel) with temps entering the intake that high.

My stock 15yo GTR Intake sensor would hit 60 degrees in traffic and once clearing it onto a freeway or otherwise it would take 2-3mins to come back down under 50 degrees, horridly slow reaction time.

Yeah....but wasn't it installed in the plenum? That's bound to have a slow reaction time. Big heavy sensor screwed into large alloy heatsink.

In reality, the GTR's air temp sensor was probably only used for protecting the motor from severe heat events. I don't think there was any extra lookup table in the ECU for timing correction against temp, or any of the other usual uses. The RB26 ECU is not a lot different from the RB20 ECU.

Oh yeah for sure, just highlighting the point that even if there is colder air flowing over it, does not necessarily mean you actually get that reported.

And yes you are right, it's just a protection thing where timing is pulled IIRC in the PFC, or maybe that's water temp, i forget haha

Few months ago installed an MFD into my R34 GTT. I used the stock GTR sensors for Exhaust and Intake. Now my car has a Blitz Return flow FMIC. To install the intake temp sensor, I drilled a hole in the "return" pipe up near where it couples to the engine bay piping and mounted it there.

I haven't gotten around to installing that sensor for my MFD yet (I have a brand new sensor from Nissan waiting for install) because I haven't been sure where best to install it, or how to do it properly without air-leaks, etc. (Anyone with suggestions, feel free to let me know :P)

However, keep in mind this sensor and read-out on the MFD wasn't an 'intake temperature sensor' but an 'intercooler temperature sensor'. The sensor itself when factory fitted to the R34 GTR was actually plugged into a spot on the factory FMIC - I can't recall it if it was on the 'hot' side or the 'cooled' side, though (Perhaps someone here knows).

This may influence why you're getting different readings from those with a GTR, and the sensor itself could definitely be affected by heatsoak given the different position you have it installed.

  • 4 months later...

Intake of 80C degrees.... I can't really be 100% sure unless I physically go poking around with a multimeter at you sensor/s and poke around in your bay.. as well as how the rest of your hardware is setup.. However, it seems quite normal to me.... Back in 1st year aeronautical engineering at uni, we learnt in our physics classes that when a gas (in our case, the gas is air) is compressed, heat being generated is the result, the more the gas is compressed, the more heat is generated. The turbo itself being hot has very little to do with the heat being added to the intake temp, it's the actual physics that's taking place during the compression of the air. So the outside ambient temperature before the air filter only plays a small part in the overall intake temps and it any, only takes place before the turbo compressor.. After the compressor is a whole different ball game as there is an entire 1.5 inch thick text book about the physical behavior of gasses as well as thermo dynamics.

A few things can be done to help keep inlet temps down. Personally, I put in a whole heap of ideas I developed using the stuff I learnt at uni when putting my car together - http://www.skylinesaustralia.com/forums/topic/425426-what-do-you-guys-think/#entry6861236 I reduced the heat soak effect in the R33 that usually take place in the section of the intercooler pipe that goes over the top of the radiator by totally reversing the flow path between the turbo and the throttlebody, so that the pipe crosses over the radiator BEFORE the intercooler. Any heat soak caused by the radiator is removed by the intercooler before entering the throttlebody. I mean, what's the use of having an intercooler when the intake flow is heated up again by the radiator's heat soak before entering the throttlebody ??? I also added some fibreglass exhaust bandage to wrap up that section of the intercooler piping to reduce the heat soak even more.

Something I did which you can't see in my photos is I mounted a 10in thermo fan on the backside of the intercooler and have intercooler fan relay triggered by the speedo signal - the fan comes on when the speed drops below 80 km/hr (as the air-to-air intercooler effectively does not start working until the car is up to speed) and turns itself off when up to speed. Well, my FMIC is working AT ALL TIMES which helps the intake temps big time - especially when the engine is making power taking off from stationary.

The last thing - I installed a intercooler water mister (NOT SPRAYER) which is triggered by a Hobbs (pressure) switch, set to kick in at 5 psi before full boost.... You see on Youtube a lot of these water sprayer systems some people are using that gives them streams of water like pissing on the intercooler are in fact quite useless. More physics - the more surface area on water 'droplets' the more evaporative cooling effect takes place. The finer the droplets the more surface area there is. The nozzles I used are 0.2mm brass units with ball bearing anti-drip fittings designed for industrial evaporative cooling on big machines. This combined with a high pressure water pump (not the useless windscreen pump !) generates a extremely fine mist. I have 4x 0.2mm nozzles mounted around the bumper opening aiming away towards the front of the car. The water misting and intercooler fan gave me an additional 9kw at the rears. That'd be the cheapest 9 kw on the entire car considering the more powerful the car gets, the more expensive each additional kw becomes.

Edited by NATAS
  • Like 1

I think you can safely assume that any temp sensor with a relatively speaking large thermal mass isn't going to be fast acting . I though GTRs used the same sensor for water temp ?

Anyway my GTS25T has the same Blitz intercooler and my air temp sensor is screwed into the back of the std cast crossover pipe . I never see anything like 80c unless its been shut down for a short time on warm days .

I'd say Nissans idea with GTRs was to have a sensor that told the computer that the system was hot because it had be running at full load for an extended period of time . From memory that sensor was in the plenum inlet on R32/33 GTRs and the intercooler outlet collector on R34 GTRs .

Also mass air sensors measure temperature because that affects density and therefore mass . Manufacturers can work out air temps , in a std car , by knowing what it is at the AFM . Std car std boost exhaust etc etc . That all goes out the window once you change things .

Ultimately we both need the air temp sensor , a real one in your case , mounted in something that doesn't have much thermal mass or parked right above the engine copping all the radiated heat .

A good spot would be in the IC return pipe far enough ahead of the turbo and exhaust manifold to not be influenced by them .

From memory Guilt Toy had his in the duct before the throttlebody but that had a non std inlet manifold and throttle on the cold side of the engine bay . Plazmaman one I think .

A .

The response by NATAS was fairly epic lol, Thanks for taking the time to write all that up!

Forgot about this thread, but in any case, i found the issue a while back... the sensor is installed in the wrong pipe,. I've got it in the pipe that comes out of the turbo to the inlet of the cooler. Hence the temprature being higher and it going up whenever boost is reached.

My bad, but still works great and is quite accurate to the relative outside temperature at rest. So i use it more as a guide as to the intake temps. Be good to get another sensor maybe and put it in the outlet pipe, and have a switch to go between the two.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Any update on this one? did you manage to get it fixed?    i'm having the same issue with my r34 and i believe its to do with the smart entry (keyless) control module but cant be sure without forking out to get a replacement  
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • perhaps i should have mentioned, I plugged the unit in before i handed over to the electronics repair shop to see what damaged had been caused and the unit worked (ac controls, rear demister etc) bar the lights behind the lcd. i would assume that the diode was only to control lighting and didnt harm anything else i got the unit back from the electronics repair shop and all is well (to a point). The lights are back on and ac controls are working. im still paranoid as i beleive the repairer just put in any zener diode he could find and admitted asking chatgpt if its compatible   i do however have another issue... sometimes when i turn the ignition on, the climate control unit now goes through a diagnostics procedure which normally occurs when you disconnect and reconnect but this may be due to the below   to top everything off, and feel free to shoot me as im just about to do it myself anyway, while i was checking the newly repaired board by plugging in the climate control unit bare without the housing, i believe i may have shorted it on the headunit surround. Climate control unit still works but now the keyless entry doesnt work along with the dome light not turning on when you open the door. to add to this tricky situation, when you start the car and remove the key ( i have a turbo timer so car remains on) the keyless entry works. the dome light also works when you switch to the on position. fuses were checked and all ok ive deduced that the short somehow has messed with the smart entry control module as that is what controls the keyless entry and dome light on door opening   you guys wouldnt happen to have any experience with that topic lmao... im only laughing as its all i can do right now my self diagnosed adhd always gets me in a situation as i have no patience and want to get everything done in shortest amount of time as possible often ignoring crucial steps such as disconnecting battery when stuffing around with electronics or even placing a simple rag over the metallic headunit surround when placing a live pcb board on top of it   FML
    • Bit of a pity we don't have good images of the back/front of the PCB ~ that said, I found a YT vid of a teardown to replace dicky clock switches, and got enough of a glimpse to realize this PCB is the front-end to a connected to what I'll call PCBA, and as such this is all digital on this PCB..ergo, battery voltage probably doesn't make an appearance here ; that is, I'd expect them to do something on PCBA wrt power conditioning for the adjustment/display/switch PCB.... ....given what's transpired..ie; some permutation of 12vdc on a 5vdc with or without correct polarity...would explain why the zener said "no" and exploded. The transistor Q5 (M33) is likely to be a digital switching transistor...that is, package has builtin bias resistors to ensure it saturates as soon as base threshold voltage is reached (minimal rise/fall time)....and wrt the question 'what else could've fried?' ....well, I know there's an MCU on this board (display, I/O at a guess), and you hope they isolated it from this scenario...I got my crayons out, it looks a bit like this...   ...not a lot to see, or rather, everything you'd like to see disappears down a via to the other side...base drive for the transistor comes from somewhere else, what this transistor is switching is somewhere else...but the zener circuit is exclusive to all this ~ it's providing a set voltage (current limited by the 1K3 resistor R19)...and disappears somewhere else down the via I marked V out ; if the errant voltage 'jumped' the diode in the millisecond before it exploded, whatever that V out via feeds may have seen a spike... ....I'll just imagine that Q5 was switched off at the time, thus no damage should've been done....but whatever that zener feeds has to be checked... HTH
×
×
  • Create New...