Jump to content
SAU Community

Recommended Posts

I just hit 30k and want to change oil and filter on my VR30DDTT and been reading people having issues with the 0w-20 oil that Nissan recommend?

what issues is there as im about to embark on servicing my car myself as booking it in has become a night when sunday is the only day i dont use the car.

if the 0w-20 is an issue why would it be recommended by Nissan and supercheap tried to tell me that my car is not listed under Nissan and to get the same as the 370z which i scoffed at and let be.

What do other V37 owners use or recommend ohh and Nissan said they dont service my vehicle either so im kinda stuck for what to do?

 

These engines are in the 400z not 370z. 

0w20 was used to passed emissions and also provide a lower fuel consumption. I am personally using 5w30 in my Q60s as the 0w20 is too thin for my liking and I drive with a heavy foot. 

I can't really say what is best for the VR30 as I don't have one, but I know plenty of people have said things about oil weights in the past without a whole lot of evidence, so I would be wanting some empirical evidence that 0W-20 is causing problems before I go with a different oil weight.

Plenty of people have told me the recommended 5W-30 oil is too thin for the VQ35 in our warmer environment, yet I have been using it in a V35 skyline in North Queensland since 2011 without issue.

Based on the manual you posted, it looks like 5W-40 will be ok, but no idea if it would be 'a better choice'.

I've been using 5w30 which is still allowed in the manual but not the recommended 0w20, I can't really say one way or the other if it is causing a problem until I tear the engine down, certainly there has been no sign of issue but I drive it hard and will change it every 5000.

Even with the Infiniti not import, my local Nissan won't help with parts or servicing. Just use a competent mechanic who has attention to detail and a compatible scan tool.

Take it from an engineer. You could use 20-60 and not notice any difference. They all thin down to approximately the same viscosity at operating temperature. Look here:

image.thumb.png.30d54212b6cf3c6d8cf62e83480a2821.png

The viscosity axis is a log scale, so you have to keep in mind that every major division up that scale is 10x the value of the previous division. And that shows that at the 0°C end of the scale the difference in viscosity between 10 and 50 SAE oil is about that factor of 10. At the 100°C end of the scale, the difference is much less, about half an order of magnitude, which is about 3x (rather than 10x). Meaning, as oils get hotter, their viscosity converges towards a common (smaller) value.

This is a chart for single grade oils, not multigrade. Keep that in mind, we're only talking about the behaviour of a single grade oil across the temperature range, and the difference in behaviour of a single grade oils at the same temperature here. I will address the multigrade situation after.

There is no line there for 5 or 0 SAE oils, but you can imagine that they are a similar space below the 10 SAE line as the the 10 is below the 20.

Look at the 10 SAE line at say, 10°C and at 90°C, being the typical (worst case) difference between a cold start and operating temperature in most of Australia. Some places never go below 20, some are frequently down to 0°C, but the argument is no invalidated by those additions to the limits I'm using. The viscosity at 10°C is about 0.2 Pa.s (Pascal seconds, which is the common term for the expanded SI units shown on the chart). At 90°C, it is about 0.009. That's more than an order of magnitude difference. Do the same for the 50 SAE oil and you get about 2 and about 0.03. That's more like 2 orders of magnitude.

But importantly, the viscosity of the 50 SAE oil at 90°C is still about one order of magnitude lower than the 10 SAE oil at 10°C. This means.....

A light weight oil, like a 0, 5 or 10, is quite thin at cold conditions, but is still thicker than a heavy oil is when that heavy oil is hot. And the engine is definitely going to be happy with the thicker oil at that hot condition, so it can only remain happy with the thinner oil at the cold condition. The difference between a 0 and a 10 SAE oil at typical Aussie cold conditions no worse than the difference between the thin and thick oils between cold and hot. And in fact, much less than "no worse".

As has been said above, the only reason maufacturers are speccing thinner oils for modern engines is to reduce fuel consumption and emissions. Thinner oils do pump faster at the first turn of the engine and so do provide earlier rise of oil pressure and supply of oil to rubbing surfaces (like cams). But really, for actual protection against these initial rotation conditions, we actually rely more on the retained oil which is kept there by the film strength (and by modifier packages that are added to the oil) anyway, and thicker oils are better at hanging on anyway, so it is probably a moot point.

If I had an engine that demanded 0W-20 oil, I would have no issue running 10W-40 in it.

The chart below is for multigrade oils (which adds confusion to the explanation, which is why I used one for single grade oils above). The multigrade oils have a difference viscosity curve, because they act like a thinner oil at low temps and as a thicker oil at high temps, so the scale gets compressed. You can see that the scale on the below chart is not logarithmic (is linear), and that all the oils collapse to the 10-25 cSt range when at operating temperature, and are much more viscous at 10°C (which is not shown on the chart, but you can see they would all shoot up above 100 cSt.

image.thumb.jpeg.dbfa49a1e8f936c83058a01dc08f5ca9.jpeg

 

  • Thanks 1
3 hours ago, GTSBoy said:

Take it from an engineer. You could use 20-60 and not notice any difference. They all thin down to approximately the same viscosity at operating temperature. Look here:

image.thumb.png.30d54212b6cf3c6d8cf62e83480a2821.png

The viscosity axis is a log scale, so you have to keep in mind that every major division up that scale is 10x the value of the previous division. And that shows that at the 0°C end of the scale the difference in viscosity between 10 and 50 SAE oil is about that factor of 10. At the 100°C end of the scale, the difference is much less, about half an order of magnitude, which is about 3x (rather than 10x). Meaning, as oils get hotter, their viscosity converges towards a common (smaller) value.

This is a chart for single grade oils, not multigrade. Keep that in mind, we're only talking about the behaviour of a single grade oil across the temperature range, and the difference in behaviour of a single grade oils at the same temperature here. I will address the multigrade situation after.

There is no line there for 5 or 0 SAE oils, but you can imagine that they are a similar space below the 10 SAE line as the the 10 is below the 20.

Look at the 10 SAE line at say, 10°C and at 90°C, being the typical (worst case) difference between a cold start and operating temperature in most of Australia. Some places never go below 20, some are frequently down to 0°C, but the argument is no invalidated by those additions to the limits I'm using. The viscosity at 10°C is about 0.2 Pa.s (Pascal seconds, which is the common term for the expanded SI units shown on the chart). At 90°C, it is about 0.009. That's more than an order of magnitude difference. Do the same for the 50 SAE oil and you get about 2 and about 0.03. That's more like 2 orders of magnitude.

But importantly, the viscosity of the 50 SAE oil at 90°C is still about one order of magnitude lower than the 10 SAE oil at 10°C. This means.....

A light weight oil, like a 0, 5 or 10, is quite thin at cold conditions, but is still thicker than a heavy oil is when that heavy oil is hot. And the engine is definitely going to be happy with the thicker oil at that hot condition, so it can only remain happy with the thinner oil at the cold condition. The difference between a 0 and a 10 SAE oil at typical Aussie cold conditions no worse than the difference between the thin and thick oils between cold and hot. And in fact, much less than "no worse".

As has been said above, the only reason maufacturers are speccing thinner oils for modern engines is to reduce fuel consumption and emissions. Thinner oils do pump faster at the first turn of the engine and so do provide earlier rise of oil pressure and supply of oil to rubbing surfaces (like cams). But really, for actual protection against these initial rotation conditions, we actually rely more on the retained oil which is kept there by the film strength (and by modifier packages that are added to the oil) anyway, and thicker oils are better at hanging on anyway, so it is probably a moot point.

If I had an engine that demanded 0W-20 oil, I would have no issue running 10W-40 in it.

The chart below is for multigrade oils (which adds confusion to the explanation, which is why I used one for single grade oils above). The multigrade oils have a difference viscosity curve, because they act like a thinner oil at low temps and as a thicker oil at high temps, so the scale gets compressed. You can see that the scale on the below chart is not logarithmic (is linear), and that all the oils collapse to the 10-25 cSt range when at operating temperature, and are much more viscous at 10°C (which is not shown on the chart, but you can see they would all shoot up above 100 cSt.

image.thumb.jpeg.dbfa49a1e8f936c83058a01dc08f5ca9.jpeg

 

What about cases like the BMW S65/S85 where part of the rod bearing wear issue is crazy tight? Obviously the real solution is to just run slightly oversize bearing clearance vs OEM but I've also seen people suggest lower viscosity oil compared to the 10W60 Castrol TWS BMW specced from the factory.

1 hour ago, joshuaho96 said:

What about cases like the BMW S65/S85 where part of the rod bearing wear issue is crazy tight? Obviously the real solution is to just run slightly oversize bearing clearance vs OEM but I've also seen people suggest lower viscosity oil compared to the 10W60 Castrol TWS BMW specced from the factory.

It's not an oil problem. It is yet another BMW design problem. Best fixed by not buying that Eurotrash in the first place, along with VAG products and half of Satan's limo supplier's catalogue.

i was thinking 5w-30 aswell.

same oil as i use in my WRX FA20DIT i want to keep it at 5000km change intervals like all my turbo vehicles.

now i just have to find how much i will need and a filter.

On 10/08/2024 at 3:17 PM, colin.ssc said:

These engines are in the 400z not 370z. 

0w20 was used to passed emissions and also provide a lower fuel consumption. I am personally using 5w30 in my Q60s as the 0w20 is too thin for my liking and I drive with a heavy foot. 

yes thats exactly right dude didnt know what he was talking about.

yer imma get 5w30 makes sense.

i will be going back there to buy exactly what i want though lol.

so after some googling a 400R VR30DDTT should take 5.2Lts of oil with Filter?

i always go a lil over so imma go 5.3or so ive always been told a lil more is always better but not to much.

and  RYCO Z436 oil filter.

yep just done that lol.

also got the RYCO filter Z436ST which is apparently slightly better flow and rubber grip outside lol.

supercheap told me to not go against the manufacturers nominated oil aswell lol.

i went with Castrol EDGE 5w-30 was going to go magnatec but was not sure.

but i used Edge in my WRX and had great results so we will see.

Thanks heaps for your input guys.

  • Like 1

well all done was crazy how many screws i had to undo to get that plastic plate off.

but replaced with 5w30 Edge and new filter went about 5.5lts of oil over the 5.3lt standard though i noticed abit of crusty coolant on my undertray looks like its come down from the overflow out that has no pipe?

should it have a pipe?

also could be just me but i noticed loud ticking now that maybe i just didnt notice before(not that i had my engine running with bonnet up much).

anyone else notice this maybe after changing to 5w30 over 0w20 oil?

  • Like 2

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • For once a good news  It needed to be adjusted by that one nut and it is ok  At least something was easy But thank you very much for help. But a small issue is now(gearbox) that when the car is stationary you can hear "clinking" from gearbox so some of the bearing is 100% not that happy... It goes away once you push clutch so it is 100% gearbox. Just if you know...what that bearing could be? It sounding like "spun bearing" but it is louder.
    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
×
×
  • Create New...