Jump to content
SAU Community

Recommended Posts

That's an awesome result for the SS3! Anyone wanna compare that to a Kando graph? Looks like similar power but less lag? (going by my not so reliable memory)

If you don't mind telling me what people these electric turbos will be marketed towards?

Because I swear it's better/ more satisfying just having a turbo car

I believe the primary intention is to use it with a 600+ HP turbo and feel like it has no lag. Like a cheaper less complex compound system.

And yes that SS3EG looks epic! The price is great too!

I believe the primary intention is to use it with a 600+ HP turbo and feel like it has no lag. Like a cheaper less complex compound system.

And yes that SS3EG looks epic! The price is great too!

Only problem is, for such a large unit it is only making 1psi +ve pressue

A good ram air system can do that

1psi = 2.036"hg

so if it is going from -5 on the boost bauge (most boost gauges read vacuum in InHg) it has made 7InHg difference

My feeling is, that if you took the electric blower out of the intake and ran the car with just an intake pipe the difference would be even less.

Stao, have you thought about using a compressor out of a centrifugial supercharger? They are designed to use less shaft RPM to flow the air.

If you can get the electric blower to move a heap of air at low shaft rpm you could be onto a winner

Problem is, if you can't find a way to refuel the batteries running the electric blower, then it's just a charge and use system...like meth/water injection, or NOS...only less efficient. And the latter of which I thought was already used to combat lag in big turbo setups?

half the reason it looks epic is cause its an ex gate..

So is the Kando I'm comparing it to :ninja:

Stao, have you thought about using a compressor out of a centrifugial supercharger? They are designed to use less shaft RPM to flow the air.

Actually, your on a good track here......

Stao, why dont you produce a belt driven suppercharger and setup a twin charge system? If you made an affordable kit you might actually do really well from it. I think what your doing now is on a similar sort of track, you just need the gearing.

Hey if it worked and was a bolt on to my motor (im SR but hello RB25 SAU) I would definitely buy it and run it with a much larger turbo. Hell, you could supply both.

No there is no lag in the electric system. The eturbo spools up and reaches surging point straight way. The key to this is not all RPMs it needs torque. I'm looking to buy an higher powered motor soon. hopefully that can make 3~5psi.

No there is no lag in the electric system. The eturbo spools up and reaches surging point straight way. The key to this is not all RPMs it needs torque. I'm looking to buy an higher powered motor soon. hopefully that can make 3~5psi.

Belt drive... Compound turbo....

Agree^

If you can compound it...so run a belt drive from engine to a gearbox that multiplies RPM for the turbo shaft. On the engine side of things, have an A/C compressor style clutch that disengages electronically at a certain RPM, where exhaust gases take over...is there a reason this wouldn't work?

Actually I wouldn't mind a centrifugal blower setup by itself just to be different, however inefficient it may be compared to a turbo...is this something you could produce Stao?

Agree^

If you can compound it...so run a belt drive from engine to a gearbox that multiplies RPM for the turbo shaft. On the engine side of things, have an A/C compressor style clutch that disengages electronically at a certain RPM, where exhaust gases take over...is there a reason this wouldn't work?

Actually I wouldn't mind a centrifugal blower setup by itself just to be different, however inefficient it may be compared to a turbo...is this something you could produce Stao?

Thats how it works for all the factory twin charged cars :)

Yeah, except that centrifugal superchargers that are belt driven from the engine don't make any boost at low revs. They need some shaft speed under their belt to make any boost at all, and only make their max boost at the fastest shaft speed. Which is a bit gay for a super-turbo compound setup, because what you really want is for the supercharger to be making boost instantly at the bottom of the rev range, which then leads on to all the benefits that you actually want from the system (which is more off idle torque, reduced pressure ratios across each stage of the compression setup, larger rear housing on the turbo stage to reduce back pressure and reversion and all that, etc, etc, etc).

The only way this discussion makes sense is if you get;

  1. A belt driven geared up electric supercharger that switches off and out of the flow circuit once the real turbo is up to speed (so, sequential really, but it could start out as compound series, and when it switches off and out the main turbo becomes conventional).
  2. A belt driven lobed blower in normal series compound arrangement with the turbo, a la what Stockymcstock did. Packaging all that stuff into the engine bay is a pain in the arse though.

Im sure a really well designed compressor with appropriate gearing could start boosting at a decent RPM and not go into surge or start blowing hot air by redline.

The idea is to compress compressed air anyway, so as long as the compressor doesnt surge or blow hot it just needs to keep compressing what the turbo is giving once its out of its efficiency range. So it should be fairly doable in my mind.

its more or less like this:

intake - big turbo inlet, big turbo outlet - supercharger inlet, supercharger outlet to intercooler and so on. The idea is to help the big turbo spin up sooner. The main restriction in a compound setup is the small housing on the small turbo, but thats a null point in this case.

Should be fun if Stao takes it on board.

Thats how it works for all the factory twin charged cars :)

I see. I always thought twin charged was done as seperate units, i.e. a blower atop the engine, fed by a turbo further down the plumbing, rather than combined into one housing.

Examples of factory twin charged cars?!?

I see. I always thought twin charged was done as seperate units, i.e. a blower atop the engine, fed by a turbo further down the plumbing, rather than combined into one housing.

Examples of factory twin charged cars?!?

Nissan March Super Turbo

The Lancia Delta's

there are a few others but cant think of them right now

Why not just use compressed air from a compressor to spool..

Would be as simple as plumbing a nozzle into the turbine (and or compressor) and having a solenoid rigged to open at desired rev range to keep turbo always on positive boost..you could even rig it so that the solenoid opens whenever turbo hits negative..

Seems pretty simple to me now you guys tell me why it won't work...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I'm looking for some real world experiences/feed back from anyone who has personally ran a EFR7670 with a 1.05 exhaust housing or a .83 I'm leaning towards the .83 because its a street car used mostly for spirited driving in the canyons roads. I"m not looking for big numbers on paper. I want a responsive powerband that will be very linear to 8000 rpm. I dont mind if power remains somewhat flat but dont want power to drop off on top. The turbo I've purchased is a 1.05, although the mounting flange T3 vs T4 and internal vs external waste gates are different on both housings, I not concern about swapping parts or making fabrication mods to get what I want. Based on some of the research I've done with chat gpt, the 1.05 housing seems to be the way to go with slightly more lag and future proofing for more mods but recommends .83 for best response/street car setup. AI doesn't have the same emotions as real people driving a GTR so I think you guys will be able to give me better feed back 😀   
    • Surely somebody has one in VIC. Have you asked at any shops?  Is this the yearly inspection or did you get a canary?
    • This is where I share pain with you, @Duncan. The move to change so many cooling system pieces to plastic is a killer! Plastic end tanks and a few plastic hose flanges on my car's fail after so little time.  Curious about the need for a bigger rad, is that just for long sessions in the summer or because the car generally needs more cooling?
    • So, that is it! It is a pretty expensive process with the ATF costing 50-100 per 5 litres, and a mechanic will probably charge plenty because they don't want to do it. Still, considering how dirty my fluid was at 120,000klm I think it would be worth doing more like every 80,000 to keep the trans happy, they are very expensive to replace. The job is not that hard if you have the specialist tools so you can save a bit of money and do it yourself!
    • OK, onto filling. So I don't really have any pics, but will describe the process as best I can. The USDM workshop manual also covers it from TM-285 onwards. First, make sure the drain plug (17mm) is snug. Not too tight yet because it is coming off again. Note it does have a copper washer that you could replace or anneal (heat up with a blow torch) to seal nicely. Remove the fill plug, which has an inhex (I think it was 6mm but didn't check). Then, screw in the fill fitting, making sure it has a suitable o-ring (mine came without but I think it is meant to be supplied). It is important that you only screw it in hand tight. I didn't get a good pic of it, but the fill plug leads to a tube about 70mm long inside the transmission. This sets the factory level for fluid in the trans (above the join line for the pan!) and will take about 3l to fill. You then need to connect your fluid pump to the fitting via a hose, and pump in whatever amount of fluid you removed (maybe 3 litres, in my case 7 litres). If you put in more than 3l, it will spill out when you remove the fitting, so do quickly and with a drain pan underneath. Once you have pumped in the required amount of clean ATF, you start the engine and run it for 3 minutes to let the fluid circulate. Don't run it longer and if possible check the fluid temp is under 40oC (Ecutek shows Auto Trans Fluid temp now, or you could use an infrared temp gun on the bottom of the pan). The manual stresses the bit about fluid temperature because it expands when hot an might result in an underfil. So from here, the factory manual says to do the "spill and fill" again, and I did. That is, put an oil pan under the drain plug and undo it with a 17mm spanner, then watch your expensive fluid fall back out again, you should get about 3 litres.  Then, put the drain plug back in, pump 3 litres back in through the fill plug with the fitting and pump, disconnect the fill fitting and replace the fill plug, start the car and run for another 3 minutes (making sure the temp is still under 40oC). The manual then asks for a 3rd "spill and fill" just like above. I also did that and so had put 13l in by now.  This time they want you to keep the engine running and run the transmission through R and D (I hope the wheels are still off the ground!) for a while, and allow the trans temp to get to 40oC, then engine off. Finally, back under the car and undo the fill plug to let the overfill drain out; it will stop running when fluid is at the top of the levelling tube. According to the factory, that is job done! Post that, I reconnected the fill fitting and pumped in an extra 0.5l. AMS says 1.5l overfill is safe, but I started with less to see how it goes, I will add another 1.0 litres later if I'm still not happy with the hot shifts.
×
×
  • Create New...