Jump to content
SAU Community

Recommended Posts

  • Replies 66
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

If you were to use it, the separator is an essential part. There is no point having a split dump unless the flows are actually split, and the only way to do that is to have the separator in there. This design is "fabricated" in that the separator is attached with fasteners. Others are welded.

The benefit of having the separator attached with fasteners, is that you can take it off so the dump is also compatible with housings where the whole turbine outlet runs all the way to the mating surface. More recent turbos are more likely to have the turbine outlet separated all the way to the mating surface, as its a more efficient shape for the gas flow.

But even if you were to want to use a split dump, you wouldn't buy one of these because the short ones are shite. The only ones worth considering are the ones that are a full dump and front pipe unit in one, and the split is dropped back in a long way down.

I think "shite" is really overstating things, i'd say "doesnt work as effectively". But IMO, should still work a little better than bellmouth.

The benefit of having the separator attached with fasteners, is that you can take it off so the dump is also compatible with housings where the whole turbine outlet runs all the way to the mating surface. More recent turbos are more likely to have the turbine outlet separated all the way to the mating surface, as its a more efficient shape for the gas flow.

Yeah, but you could grind off the welded in type flush with the flange anyway, so it's 50:50.

I think "shite" is really overstating things, i'd say "doesnt work as effectively". But IMO, should still work a little better than bellmouth.

I (being an aerodynamicist type engineer) prefer the concept of the split dump. But I think it is a waste of time to squirt it back in up high in the dump pipe just to make a dump that is easily compatible with the original engine pipe. A long split makes sense where a short one doesn't.

is it going to be better than the standard dump? and we are 100% saying that on the rb25det, that separator needs to stay in. (standard turbo.)

Standard RB turbo, yes, you need the separator.

I (being an aerodynamicist type engineer) prefer the concept of the split dump. But I think it is a waste of time to squirt it back in up high in the dump pipe just to make a dump that is easily compatible with the original engine pipe. A long split makes sense where a short one doesn't.

So, from a theoretical point of view, would you say that splits should spool better (ie consider what happens when the gate is shut, so the interference of the merge is not a problem yet)? I used to know something about fluid dynamics, but that was a long time ago and i've forgotten it all....

So, from a theoretical point of view, would you say that splits should spool better (ie consider what happens when the gate is shut, so the interference of the merge is not a problem yet)? I used to know something about fluid dynamics, but that was a long time ago and i've forgotten it all....

Absolutely. There was once a very well informed Garrett engineer who used to post on performanceforums and contributed an enormous amount of good data to our knowledge base. He said that Garrett's testing showed that a separate wastegate/turbine outlet arrangement always tested better than if the wastegate flow was allowed to spill in an uncontrolled fashion into the turbine exit flow.

But there were limits and caveats on that statement. The turbine exit dump should be a smoothly expanding cone from the diameter of the turbine exit opening up to whatever pipe size you are going to run as a dump. The ideal expansion angle was somewhere in the 7 - 11° range, I can't remember exactly. So if you have a 2" turbine hole and want to run a 3" pipe, you need a nice conical transition betweeen them. The trouble is, you can do that on an engine dyno easily enough, but in a real engine bay the pipe usually also has to bend through 90° very soon after it comes off the back of the turbo. Makes it hard to go for a smoothly increasing cone angle. Nevertheless, there have been others (such as CES) who showed that you can get good results by making sure you use all the length/room you can to put as good a cone direct onto the turbine outlet as possible before beding it downward.

So the above statement holds true for any turbine exit, regardless of whether the turbo is internal or external gated. It is certainly easier to organise on an external gated turbo, because they usually have a circular outlet. In fact, some of them even have the beginnings of the appropriate cone angle cast into the housing (those where the turbine in snugged a bit deeper back into the housing).

Where is gets difficult to make anything that lines up with the Garrett and CES findings is where your internal wastegate shares a big open space with the turbine outlet like the Nissan turbos usually do. In this case, the Garrett findings were that the nasty cross flow of wastegate gas flowing over the swirling flow comeing out of the turbine tended to increase the pressure in the dump. Obviously, for the best response and the best outright power potential, you want the pressure in the dump to be as low as possible. You want the turbine outlet flow to be able to get out and expand as smoothly and quickly as possible. Making it have to fight its way through wastegate flow is not good.

Granted, when you are coming onto boost the wastegate will be shut, but the wastegate will eventually start to open even before you have full boost, and of course once at full boost the wastegate has to be open. It does mess up the flow.

So the ideal split dump pipe would have a nice conical expansion from the turbine outlet to the turbine dump's diameter and would not re-enter the wastegate gas any closer to the turbine outlet than absolutely necessary. And it would re-enter it in the best manner to avoid interfering with the flow - so down at the bottom bend makes good sense. The shorty dumps that have to mate up with the original engine pipe simply don't have the room for any of that. The CES split dumps have been shown to work well. The cheap copies of same have different mileage, depending on how much effort they put into coning out the turbine exit and how nice the fabrication is, particularly at the point where the flows merge. My cheapy is OK, but probably nowhere near as good as the CES dump.

But, I can definitely say that the cheapy split I have made a huge change to the spool behaviour compared to the OEM dump. The OEM dump has a bigger volume than the turbine only part of my split dump, yet the split dump spooled much earlier, and made the boost setting increase by quite a bit (had to adjust it back down after fitting the dump, but can't remember how much by because it was so many years ago). I attribute this to the single circular cross section pipe used for the turbine dump on the split being a much better way for the gases to get out of the turbine than the larger more rectangular shape of the original dump.

I haven't back to back tested a split like mine against a big bellmouth, so I really cannot say that one is better than the other, but I do know that the long split dump is a hell of a lot better than the original dump.

Absolutely.

<snip>

I haven't back to back tested a split like mine against a big bellmouth, so I really cannot say that one is better than the other, but I do know that the long split dump is a hell of a lot better than the original dump.

Thanks for taking the time to write that up :thumbsup:

I'm pretty sure 90% of the people posting here don't know what the f**k they are talking about or why. They are just regurgitating what they have read somewhere. Split or bellmouth makes stuff all difference when you make tiny amounts of HP. The fact that it's 3inch makes it shit and means that you are definitely making less than 400hp at the wheels anyway.

Say you put on the bellmouth and make 50rpm better response? The next guy doesn't or he fits the split dump and say he buy s a cheap ass one from China and it doesn't fit correctly or he fits it at home and does an awesome job. There are just as many people saying the split dump is better as the people saying the bellmouth is better. They are the same - Comparable results aren't comparable.

^^ yeah what Dan said.

I had a CES split on the Stagea and back to back with a bellmouth there was a bees dick in it but bellmouth made slightly more power everywhere with a GT-RS. A whisker more power everywhere hardly counts because taking a dump might have netted more performance.

The reason I would choose a bellmouth is the price difference and head off the risk of the wastegate fowling.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Wheel alignment immediately. Not "when I get around to it". And further to what Duncan said - you cannot just put camber arms on and shorten them. You will introduce bump steer far in excess of what the car had with stock arms. You need adjustable tension arms and they need to be shortened also. The simplest approach is to shorten them the same % as the stock ones. This will not be correct or optimal, but it will be better than any other guess. The correct way to set the lengths of both arms is to use a properly built/set up bump steer gauge and trial and error the adjustments until you hit the camber you need and want and have minimum bump steer in the range of motion that the wheel is expected to travel. And what Duncan said about toe is also very true. And you cannot change the camber arm without also affecting toe. So when you have adjustable arms on the back of a Skyline, the car either needs to go to a talented wheel aligner (not your local tyre shop dropout), or you need to be able to do this stuff yourself at home. Guess which approach I have taken? I have built my own gear for camber, toe and bump steer measurement and I do all this on the flattest bit of concrete I have, with some shims under the tyres on one side to level the car.
    • Thought I would get some advice from others on this situation.    Relevant info: R33 GTS25t Link G4x ECU Walbro 255LPH w/ OEM FP Relay (No relay mod) Scenario: I accidentally messed up my old AVS S5 (rev.1) at the start of the year and the cars been immobilised. Also the siren BBU has completely failed; so I decided to upgrade it.  I got a newer AVS S5 (rev.2?) installed on Friday. The guy removed the old one and its immobilisers. Tried to start it; the car cranks but doesnt start.  The new one was installed and all the alarm functions seem to be working as they should; still wouldn't start Went to bed; got up on Friday morning and decided to have a look into the no start problem. Found the car completely dead.  Charged the battery; plugged it back in and found the brake lights were stuck on.  Unplugging the brake pedal switch the lights turn off. Plug it back in and theyre stuck on again. I tested the switch (continuity test and resistance); all looks good (0-1kohm).  On talking to AVS; found its because of the rubber stopper on the brake pedal; sure enough the middle of it is missing so have ordered a new one. One of those wear items; which was confusing what was going on However when I try unplugging the STOP Light fuses (under the dash and under the hood) the brake light still stays on. Should those fuses not cut the brake light circuit?  I then checked the ECU; FP Speed Error.  Testing the pump again; I can hear the relay clicking every time I switch it to ON. I unplugged the pump and put the multimeter across the plug. No continuity; im seeing 0.6V (ECU signal?) and when it switches the relay I think its like 20mA or 200mA). Not seeing 12.4V / 7-9A. As far as I know; the Fuel Pump was wired through one of the immobiliser relays on the old alarm.  He pulled some thick gauged harness out with the old alarm wiring; which looks to me like it was to bridge connections into the immobilisers? Before it got immobilised it was running just fine.  Im at a loss to why the FP is getting no voltage; I thought maybe the FP was faulty (even though I havent even done 50km on the new pump) but no voltage at the harness plug.  Questions: Could it be he didnt reconnect the fuel pump when testing it after the old alarm removal (before installing the new alarm)?  Is this a case of bridging to the brake lights instead of the fuel pump circuit? It's a bit beyond me as I dont do a lot with electrical; so have tried my best to diagnose what I think seems to make sense.  Seeking advice if theres for sure an issue with the alarm install to get him back here; or if I do infact, need an auto electrician to diagnose it. 
    • Then, shorten them by 1cm, drop the car back down and have a visual look (or even better, use a spirit level across the wheel to see if you have less camber than before. You still want something like 1.5 for road use. Alternatively, if you have adjustable rear ride height (I assume you do if you have extreme camber wear), raise the suspension back to standard height until you can get it all aligned properly. Finally, keep in mind that wear on the inside of the tyre can be for incorrect toe, not just camber
    • I know I have to get a wheel alignment but until then I just need to bring the rear tyres in a bit they're wearing to the belt on the inside and brand new on the outside edge. I did shorten the arms a bit but got it wrong now after a few klms the Slip and VDC lights come on. I'd just like to get it to a point where I can drive for another week or two before getting an alignment. I've had to pay a lot of other stuff recently so doing it myself is my only option 
    • You just need a wheel alignment after, so just set them to the same as current and drive to the shop. As there are 2 upper links it may also be worth adding adjustable upper front links at the same time; these reduce bump steer when you move the camber (note that setting those correctly takes a lot longer as you have to recheck the camber at each length of the toe arm, through a range of movement, so you could just ignore that unless the handling becomes unpredictable)
×
×
  • Create New...