Jump to content
SAU Community

Recommended Posts

The actuator has the same spring as in the large can actuators. Unfortunately stock comp housing does not have the clearance to fit the large can housing. So I’ve pressed the same spring into a smaller actuation housing. The result would be identical.

With the waste gate controller. It can be loaded or adjusted to give effects or un-loaded to give no effect. It will still be working with a high pressure actuator.

You will likely to archive the highest exhaust manifolds pressure reading in 4th gear. Ie: Cars with smaller wastegate port or restricted dump pipe spikes the most in 4th and 5th gear.

Means if you can get boost curve to hold steady by pressure dispatching limitation in 4th / 5th then it will unlikely to spike during lower gears.

This method changes the traditional external dependent analog operation into limited / none dependency mechanical operation. The only car that has been on dyno with it is the 290rwkws PU high flowed unit. Unfortunately I wasn't present during time of the tune, plus turbine housing used on it was in .82 with GT35 spec turbine wheel. I've been informed by Nick that he did not experience boost drop at 19psi as you can see the power curve did not go flat or tip down towards red line.

Other thing mentioned is PU housings are equipped with 30mm internal gate with a large flap to total eliminate un-controlled boost spike. I believe the wastegate controller is the only solution in stabilizing boost control with internal wastegate setups.

Any way I'll be seeing Mark next weekend to check out his actuator and integrate the wastegate controller to his current turbo.

The actuator has the same spring as in the large can actuators. Unfortunately stock comp housing does not have the clearance to fit the large can housing. So I’ve pressed the same spring into a smaller actuation housing. The result would be identical.

What psi spring is in there? 14psi? Surely its possible to get a higher psi spring

That depends on the size of the wastegating port and gate flap.

Force = Pressure x Area

So the bigger port and gate you have the greater force is required to keep it shut through the actuator or other means.

Stock housing's only got 24mm gate, ATR43 housing's fitted with a 30mm gate. So the actuation level varies with the same spring tension.

Overall smaller wastegates are more likely to gain overall control with an actuator only with smaller wheel combinations on smaller engines. Larger wheel combinations requires greater sized gate to eliminate uncontrolled boost spike but harder to gain overall control. Which is why waste gate controller was introduced.

That depends on the size of the wastegating port and gate flap.

Force = Pressure x Area

So the bigger port and gate you have the greater force is required to keep it shut through the actuator or other means.

Stock housing's only got 24mm gate, ATR43 housing's fitted with a 30mm gate. So the actuation level varies with the same spring tension.

Overall smaller wastegates are more likely to gain overall control with an actuator only with smaller wheel combinations on smaller engines. Larger wheel combinations requires greater sized gate to eliminate uncontrolled boost spike but harder to gain overall control. Which is why waste gate controller was introduced.

So you are using the highest tension spring in the actuator available? I have heard of actuator springs up to 25psi, surely there is something stiffer out there that can be jammed into the small can actuator.

your big can actuator looks extactly like the std actuator... the small can actuator makes it look aftermarket and not stock at all... im tempted to modify the standard wastegate actuator bracket, so that the larger can (one that looks like standard size) can fit

I'm fitted my own AFM in between cooler piping today. Pretty easy:

You need 4 clamps, and 2x 3 to 2.5 inch reducers. (we can supply them for $50)

r33afm.jpg

and a metal 3inch intake pipe made out of 40cm long 3inch aluminum pipe with a 45 degrees 3inch rubber hose:

intakepipe.jpg

I apologize if the heat wrap looks crap and funny. lol (found it pointless having a big cooler if air's picking up heat again through piping).

Also we can install a big 32mm disc and machine 30mm internal gates @ $100 for who ever wants to get it done.

r33turbinehousing2.jpg

Finally finished the install off my external gate ATR43 with a .63 rear housing and all I can say is wow >_<

After the first test run and it's making full boost at 4300 rpm (compared to 4500rpm with previous VG30 highflow) and the external gate sounds off it's tits :cool:

Can't wait to run it in and get it on the dyno for a re-tune.

Finally finished the install off my external gate ATR43 with a .63 rear housing and all I can say is wow >_<

After the first test run and it's making full boost at 4300 rpm (compared to 4500rpm with previous VG30 highflow) and the external gate sounds off it's tits :cool:

Can't wait to run it in and get it on the dyno for a re-tune.

Just to update I loaded it up in 4th and made full boost just a fraction after 4000rpm, so nearly 500rpm better than my old vg30 highflow.

Just to update I loaded it up in 4th and made full boost just a fraction after 4000rpm, so nearly 500rpm better than my old vg30 highflow.

and what do you class as fullboost?

RB25det with same turbo will archive full 24psi of boost by 3800RPM. But obviously we recommend .82 housings for BR25det as its limiting power out put. RB20's are ok with .63 rears due to smaller engine size.

Yea I'm also curious how you get a good reading and pressure, without breaking the hard plastic with the clamps. Ideally, you'd want to retrofit the AFM into a metal pipe, but I guess what you've done works well enough.

BTW, what is the narrow pipe with wrapping going up in the 1st picture? Is that your BOV plumbback?

is that the same as mine stao?

Yes same as yours. I've sent every thing back last week. Its got the wastegate controller installed. So you can play with that to get external gate's result.

Fitting AFM in between cooler piping, it avoids engine stalling problem every time you back off the accelerator running none or atmosphere bov with metal intake pipe. That plastic casing won't crack. My sil180 has the same setup and I run it 24psi. The only thing do happen to them is the plastic casing covering all the digital components do gets blown away by boost resulting a massive boost leak. Just Ziptie it tight.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I'm back from the dyno - again! I went looking for someone who knew LS's and had a roller dyno, to see how it shaped up compared to everything else and confirm the powerband really is peaking where Mr Mamo says it should. TLDR: The dyno result I got this time definitely had the shape of how it feels on the road and finally 'makes sense'. Also we had a bit more time to play with timing on the dyno, it turns out the common practice in LS is to lower the timing around peak torque and restore it to max after. So given a car was on the dyno and mostly dialled in already, it was time for tweaking. Luis at APS is definitely knowledgable when it came to this and had overlays ready to go and was happy to share. If you map out your cylinder airmass you start seeing graphs that look a LOT like the engine's torque curve. The good thing also is if you map out your timing curve when you're avoiding knock... this curve very much looks like the inverse of the airmass curve. The result? Well it's another 10.7kw/14hp kw from where I drove it in at. Pretty much everywhere, too. As to how much this car actually makes in Hub Dyno numbers, American Dyno numbers, or Mainline dyno numbers, I say I don't know and it's gone up ~25kw since I started tinkering lol. It IS interesting how the shorter ratio gears I have aren't scaled right on this dyno - 6840RPM is 199KMH, not 175KMH. I have also seen other printouts here with cars with less mods at much higher "kmh" for their RPM due Commodores having 3.45's or longer (!) rear diff ratios maxing out 4th gear which is the 1:1 gear on the T56. Does this matter? No, not really. The real answer is go to the strip and see what it traps, but: I guess I should have gone last Sunday...
    • 310mm rotors will be avilable from Australia, Japan, and probably a few other places. Nothing for the front can be put on the back.
    • The filter only filters down to a specific size. Add to that, the filter is AFTER the pump. So it means everything starts breaking your pump even if its being filtered out.
    • Just like in being 14mm too small (296mm) makes it not fit, being 14mm too big (324mm) it also won't fit. You want to find the correct rotor.
    • @GTSBoy Ok so that was the shops problem...they showed R33 rotors on R34 page and i did not know 296 do not fit(and are for R33) Yes i bought "kit" with rotors and pads. Pads are ok(i have GTT calipers front and rear). They have some 324mm but no 310mm. So i dont know if they would fit. I have 17inch LMGT4s So another question. Can i fit those in the rear or they are just "too" big for that?
×
×
  • Create New...