Jump to content
SAU Community

Recommended Posts

Also better pics of the dyno graph:

1000229_689430967737932_1443849661_n.jpg

581486_689430971071265_1478488373_n.jpg

581678_689430964404599_613207679_n.jpg

Green is my old setup: stock engine + china manifold

Blue: Is the forged ported engine + Brae manifold

Everything else is the same

Its a normal intercooler just the attached piping is return flow

Sort like this pic I found on google

25993916.jpg

So if Scotty where to fix up some of the bends it might be better lol?

As im going to assume its the angle of the bends not the length of the pipe that might be the restriction?

Is hybrid intercoolers any good? Dont know much about them

Personally I highly doubt it has anything to do with the bend causing restriction. Mine was a pretty fkn brutal bend as well as being 2.5" piping and didn't have any issues flowing 295rwkw.

Personally I highly doubt it has anything to do with the bend causing restriction. Mine was a pretty fkn brutal bend as well as being 2.5" piping and didn't have any issues flowing 295rwkw.

Interesting!

Though 284rwkw and 295rwkw isn't much difference lol

Have there actually been results with these turbos on an RB25 making more power on straight pump gas? I've made noises about the wondering how the VNT/FNT technology would perform on pump gas when being leaned on - partly because I am curious about how exhaust manifold pressure is going to behave with what could be defined as obstructions along the flow path towards the turbine. E85 can mask some effects of soaring pressure (ie, being much more knock resistant) but with pump gas it is going to start complaining quite quickly if it is a bit excessive.


The principle behind VNT could easily be thought of as being equivalent to being variable A/R in regards to it's effect, and relies heavily on correct actuation to not become a restriction at the wrong point and also providing good spool - however how FNT has had me fascinated is that surely there is the potential that it has the net effect of providing a larger a/r that flows (and spools) like a smaller one, to some degree defeating the purpose?

I have been specifically waiting for pump gas results to see how these go and this is the first FNT I have noticed being leaned on using pump gas and the result is what I would have expected with "nozzles" angled to boost spool which don't adjust once flow requirements increase. There may be results for this setup which prove that it is fine, so I am absolutely by no means suggesting that I believe there would be an issue with it - I am just voicing an idea which hopefully can easily be proven wrong to eliminate, or otherwise provide a possible explanation.

Interesting!

Though 284rwkw and 295rwkw isn't much difference lol

That's true, though it was at ~17psi and the tuner said it still had more but he stopped there because it's a standard engine (read: he's a big softy sooky-lala)

Have there actually been results with these turbos on an RB25 making more power on straight pump gas? I've made noises about the wondering how the VNT/FNT technology would perform on pump gas when being leaned on - partly because I am curious about how exhaust manifold pressure is going to behave with what could be defined as obstructions along the flow path towards the turbine. E85 can mask some effects of soaring pressure (ie, being much more knock resistant) but with pump gas it is going to start complaining quite quickly if it is a bit excessive.

The principle behind VNT could easily be thought of as being equivalent to being variable A/R in regards to it's effect, and relies heavily on correct actuation to not become a restriction at the wrong point and also providing good spool - however how FNT has had me fascinated is that surely there is the potential that it has the net effect of providing a larger a/r that flows (and spools) like a smaller one, to some degree defeating the purpose?

I have been specifically waiting for pump gas results to see how these go and this is the first FNT I have noticed being leaned on using pump gas and the result is what I would have expected with "nozzles" angled to boost spool which don't adjust once flow requirements increase. There may be results for this setup which prove that it is fine, so I am absolutely by no means suggesting that I believe there would be an issue with it - I am just voicing an idea which hopefully can easily be proven wrong to eliminate, or otherwise provide a possible explanation.

Stao was originally doing all his testing on pump 98 man. All the FNT gear was originally produced with pump 98, and he didn't have an issue. There are a tonne of 98 based FNT results (from Stao's test car, same tuner same dyno) in the dyno thread.

See below hekkas MS Paint representation of what my bend looked like. Yes, the piping didn't even make 90 degrees before meeting the next part of the bend.

Shmf4ht.jpg

Stao was originally doing all his testing on pump 98 man. All the FNT gear was originally produced with pump 98, and he didn't have an issue. There are a tonne of 98 based FNT results (from Stao's test car, same tuner same dyno) in the dyno thread.

Thought that could be the case - any examples out of curiosity? I did a search for "FNT" and the only result that came up for me was Hanaldo's which I have the impression the entire setup has never quite delivered for him, yet?

One thing I forgot to mention

With the new engine, Trent had to take out 8 degrees of timing compared to the old engine, as any more it would be pinging too much.

Fuel used was BP 98. Filled up only a couple days before hand

Thought that could be the case - any examples out of curiosity? I did a search for "FNT" and the only result that came up for me was Hanaldo's which I have the impression the entire setup has never quite delivered for him, yet?

Almost all results pre page 43 on the dyno thread is on 98 ron, bar like 2 posts max.. Once Stao went to E85 he never wen't back.

To my understanding the turbine side of things reached a point where no changes were needed beyond housings and compressors. Thus he did a back to back with the SS2 when he went to E85 and any advancement from there can be seen as an improvement regardless of what fuel you are running.

Here is page 43 where he first changed to the current full blade SS2 on 98, that is an FNT IWG item and went 312kw:

http://www.skylinesaustralia.com/forums/topic/55845-rb25-turbo-upgrade-all-dyno-results/page-43

I am fairly sure the 312kw item is the new version.


Old version is the high/low blade 71mm compressor, like what can be found in my SS1PU. Fairly high tip height with familiar looking blade curvature.

New version Stao played with the 'full blade' design and found it to work quite well. Full blade SS2 is 74mm.

I am fairly sure the 312kw item is the new version.

Old version is the high/low blade 71mm compressor, like what can be found in my SS1PU. Fairly high tip height with familiar looking blade curvature.

So in theory the new one may be higher flowing? Here's Stao's post that made me think the 312kw was an old version http://www.skylinesaustralia.com/forums/index.php?/topic/261613-Hypergear-Hiflow-Service-Continued.#entry6948624

In the 312 result he noted it as being a prototype, which I am sure was the move to the full blade wheel. However, the older SS2 was also 300kw capable.

Time for Stao to chime in and clarify now lol

I have been specifically waiting for pump gas results to see how these go and this is the first FNT I have noticed being leaned on using pump gas and the result is what I would have expected with "nozzles" angled to boost spool which don't adjust once flow requirements increase. There may be results for this setup which prove that it is fine, so I am absolutely by no means suggesting that I believe there would be an issue with it - I am just voicing an idea which hopefully can easily be proven wrong to eliminate, or otherwise provide a possible explanation.

This is the result from the latest SS2 FNT model on pump 98, stock manifolds, internally gated as previous posted. The older version is no longer manufactured.

power.jpg

boost.jpg

I had a quick chat with Trent (tuner) about With Blah_blah's result. Apparently he pulled 8 degrees of timing out of his old map, as it some how knocked badly. Meanwhile the stock engine did not have this issue using the same turbocharger and the rest of the setup.

Reasons given by his engine builder was that because the head ports are now over sized so they flow much more then what they were standard. And the extra flow now demands for a larger rear housing. I personally do not have any experience with ported heads so I can't comment.

Well, bigger rear end is not a problem, I have them in 1.02 rear or .82 turbine housing with a bigger G4 turbine wheel.

Hmm interesting - if it were enough porting to cause that effect then that potentially means too much porting, I'd have thought! Its not miles behind in power for 8deg less timing though, at least?

It may not even be the rear housing it may be the turbo altogether is a bad match now...I mean you design your turbos to match a rb25s power zone...that is 3500-6500....he has now designed a head that is probably more suited to flow from 4000-8000 so a bigger turbo all together may be what's in order..

Will the ss2 even spin to 8k or will it drop off power too early?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Place the new daughterboard in the case and mount it using the 3 small black rivets provided, and reconnect the 3 factory ribbon cables to the new board Then, use the 3 piggyback cables from the daughterboard into the factory board on top (there are stand offs in the case to keep them apart. and remember to reconnect the antenna and rear cover fan wires. 1 screw to hold the motherboard in place. Before closing the case, make a hole in the sticker covering a hole in the case and run the cable for the android unit into the plug there. The video forgot this step, so did I, so will you probably. Then redo the 4 screws on back, 2 each top and bottom, 3 each side and put the 2 brackets back on.....all ready to go and not that tricky really.      
    • Onto the android unit. You need to remove the top screen because there is a daughterboard to put inside the case. Each side vent pops out from clips; start at the bottom and carefully remove upwards (use a trim remover tool to avoid breaking anything). Then the lower screen and controls come out, 4 screws, a couple of clips (including 3 flimsy ones at the top) and 3 plugs on the rear. Then the upper screen, 4 screws and a bunch of plugs and she is out. From there, remove the mounting brackets (2 screws each), 4 screws on the rear, 2 screws top and bottom and 3 screws holding in the small plates on each side. When you remove the back cover (tight fit), watch out for the power cable for the fan, I removed it so I could put the back aside. The mainboard is held in by 1 screw in the middle, 1 aerial at the top and 3 ribbon cables. If you've ever done any laptop stuff the ribbon cables are OK to work with, just pop up the retainer and they slide out. If you are not familiar just grab a 12 year old from an iphone factory, they will know how it works The case should now look like this:
    • Switching the console was tricky. First there were 6 screws to remove, and also the little adapter loom and its screws had to come out. Also don't forget to remove the 2 screws holding the central locking receiver. Then there are 4 clips on either side....these were very tight in this case and needed careful persuading with a long flat screw driver....some force required but not enough to break them...this was probably the fiddliest part of the whole job. In my case I needed both the wiring loom and the central locking receiver module to swap across to the new one. That was it for the console, so "assembly is the reverse of disassembly"
    • But first....while I was there, I also swapped across the centre console box for the other style where the AV inputs don't intrude into the (very limited !) space.  Part# was 96926-4GA0A, 284H3-4GA0B, 284H3-4GA0A. (I've already swapped the top 12v socket for a USB bulkhead in this pic, it fit the hole without modification:) Comparison of the 2: Basically to do the console you need to remove the DS and PS side console trim (they slide up and back, held in by clips only) Then remove the back half of the console top trim with the cupholders, pops up, all clips again but be careful at the front as it is pretty flimsy. Then slide the shifter boot down, remove the spring clip, loose it forever somewhere in the car the pull the shift knob off. Remove the tiny plastic piece on DS near "P" and use something thin and long (most screwdrivers won't fit) to push down the interlock and put the shifter down in D for space. There is one screw at the front, then the shifter surround and ashtray lift up. There are 3 or 4 plugs underneath and it is off. Next is the rear cover of the centre console; you need to open the console lid, pop off the trim covering the lid hinge and undo the 2rd screw from the driver's side (the rest all need to come out later so you can do them all now and remove the lid) Then the rear cover unclips (6 clips), start at the top with a trim tool pulling backwards. Once it is off there are 2 screws facing rearwards to remove (need a short phillips for these) and you are done with the rear of the console. There are 4 plugs at the A/V box to unclip Then there are 2 screws at the front of the console, and 2 clips (pull up and back) and the console will come out.
    • So, a bit of a side trip, but one that might be interesting for people with JDM cars and japanese head units. I know @Pac previously posted about a carplay/android auto adapter he installed which used the AUX input, and @V35_Paul put in one of the Tesla style units that replace both screens. The option I went with was a Lsait LLT-YF-VER5.87_2 (https://www.alibaba.com/product-detail/Lsailt-8GB-Android-Multimedia-Interface-for_1601187633672.html). Price was $1,150 for a single unit although they are much cheaper if you are willing to buy 2....$857ea. Make you you get the version 2 not version 1, it is faster and has a better UI - this is the manufacturer listing: http://www.lsailt.com/product/348.html. BTW if you've never bought from Alibaba before, don't be concerned....these guys can't stay in business unless they are responsive, ship fast etc, they were excellent (probably faster shipping than most local places) So, this was my task for a lazy Sat afternoon....looks complex but was all done in a few hours (it probably helps that I had some of it apart before so it was a bit familiar). I also decided to add a HD USB drive recorded at the same time and the unit also supports an aftermarket reverse cam (if you don't want to retain factory) and also AV in and HDMI out It looks much worse than it is, in fact in was genuinely all plug and play (no custom wiring at all). This video was pretty good (skipped a few steps), unfortunately they are an Aussie seller but no longer sell this unit (I guess Carplay/AA adapters are easier to install and much cheaper) https://www.youtube.com/watch?v=T5hJfYOB8Dg
×
×
  • Create New...