Jump to content
SAU Community

Recommended Posts

  • 2 weeks later...
On 9/24/2019 at 11:01 AM, iruvyouskyrine said:

Also can i request some pics of your engine bay (specifically the breather setup)

I'll do my best to give clear idea of the approach.  Might need a few more pics but the following few are from various stages of development.

There is a log of crankcase pressure, but with a max of 2kPa and engine revs in 6-7000 range and MAP 230kPa it doesn't show much.  Really just showed me that the setup I've run is able to push air out without big restriction against flow.

These few shots show the original LHS can that was configured with feeds from the RB26 cam covers with baffle kits.  Can has an internal baffle, and a drain/vent to/from the sump.  No one-way control of airflow.  Sheet metal in the sump provides a diverter to discourage oil trying to push up that hose.  All lines are big diameter, and the breather is via a 50mm filter. The scalloped out piece in the can is required to allow the big turbo drain hose to be routed without problems.

The yellow sump shows 2 x AN fittings, one plumbs to the LHS can, the other to the non-Neo head drain.  Big internal diameters to provide easy passage of air or oil, whatever was being passed up or down from head to sump.

Choice on the RHS was for a barbed fitting, as much for compactness in a tight area as anything else.  I'll get a pic or 2 of that up at some point, plus a reasonable description.

LHS, in operation showed that there was no oil pushing through the cam cover vents into the LHS catch can.  The hoses were more or less dry internally after running.  The conclusion was that majority of blow by gases in the crank case were not pushing up the rear of the block, but were able to take the path of least resistance via that "drain back" straight from the sump. 

How did I conclude that?  Ran a brand new white sock on the filter, and there was a very light discolouration from oil.  So air was passing out the filter, and minimal oil being entrained.

The answer to an obvious question - yes it is very tight to package.  Fiddly and relevant to track use only.

 

20190609_111101.jpg

20190117_070317.jpg

20190115_142916.jpg

20181027_171814.jpg

20181026_163721.jpg

20181019_113457.jpg

  • Like 3

The can plumbed to the RHS of sump is effectively only an expansion chamber.  This one was a rushed afterthought and needs more work.  No diversion baffle in the scraper plate sheet metal, and oil was not prevented from being pushed up the hose.  Once it's in the hose, a bit of airflow can make oil go up the 500mm and out a similar filter (but using a 40mm pipe).  Oil losses were probably in the order of 1-200mm, but it goes everywhere. The RHS can is mounted under my remote brake fluid reservoirs, general design is simple and probably about right.  No brake booster - earlier pics in this build show it's running floor mounted pedals with bias adjust.  Again, not relevant to road cars.

Pics will follow.  But this is one mod I think is very very useful in venting air from the crankcase, and allowing oil to flow back downstairs rather than be trapped upstairs and leading to pump cavitation

Here's another one that is relevant (I think) to those people running Precision turbos.  I originally used commercially available oil drain fittings, and encountered smoke out the exhaust that people seem to comment on about PTE setups.

To their credit, PTE do a very direct/specific tutorial on their site, and on YouTube as to their turbos requirements on drains.  It mostly relates to the shape of their drain port, and I did not find any compatible setups that could meet their requirements.  So we made one, and used hose and fittings as large as we could physically fit.  Yes, there were routing problems, and yes, there were concerns about heat.

But this setup does work, and no smoke.  I do not like that we were put to the test to fix this issue (PTE should have a specific fitting made/supplied with their design to avoid dramas), but it tells me things about people who simply whine online rather than get a competent fabricator, and be prepared to work out the issues.  This is a good turbo IMO.  How it compares to competitors is open to discussion but I'm not complaining.  The oil feed filter is visible in pic.

20190422_102240.jpg

  • Like 1

Pics showing design and positioning of the RHS can.  Simple construction, hollow/unbaffled internally.  Main body is 63mm tube with a 40mm neck to suit filter.  AN nipple on the bottom to take the hose fitting.

The most important aspect of this was to have a constant fall in the house routed from the can to sump level, nowhere for oil to pool and be blown out the filter by crankcase gases being vented.

As per previous comment, the two cans are effectively used to vent blow by gases direct from the sump.  Understanding the behaviour of oil within the sump while the engine is operating at speed/load, and with lateral/longitudinal acceleration loads is not easy, but we learned quickly that a diverter/guide near the sump fittings is necessary to deter oil climbing the crankcase wall and being pushed into the vent hose along with gases.  Once it's there, it will get pushed upwards and be spat out.

20190809_170033.jpg

20190809_165819.jpg

20190809_165737.jpg

  • Like 1

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Thought I would get some advice from others on this situation.    Relevant info: R33 GTS25t Link G4x ECU Walbro 255LPH w/ OEM FP Relay (No relay mod) Scenario: I accidentally messed up my old AVS S5 (rev.1) at the start of the year and the cars been immobilised. Also the siren BBU has completely failed; so I decided to upgrade it.  I got a newer AVS S5 (rev.2?) installed on Friday. The guy removed the old one and its immobilisers. Tried to start it; the car cranks but doesnt start.  The new one was installed and all the alarm functions seem to be working as they should; still wouldn't start Went to bed; got up on Friday morning and decided to have a look into the no start problem. Found the car completely dead.  Charged the battery; plugged it back in and found the brake lights were stuck on.  Unplugging the brake pedal switch the lights turn off. Plug it back in and theyre stuck on again. I tested the switch (continuity test and resistance); all looks good (0-1kohm).  On talking to AVS; found its because of the rubber stopper on the brake pedal; sure enough the middle of it is missing so have ordered a new one. One of those wear items; which was confusing what was going on However when I try unplugging the STOP Light fuses (under the dash and under the hood) the brake light still stays on. Should those fuses not cut the brake light circuit?  I then checked the ECU; FP Speed Error.  Testing the pump again; I can hear the relay clicking every time I switch it to ON. I unplugged the pump and put the multimeter across the plug. No continuity; im seeing 0.6V (ECU signal?) and when it switches the relay I think its like 20mA or 200mA). Not seeing 12.4V / 7-9A. As far as I know; the Fuel Pump was wired through one of the immobiliser relays on the old alarm.  He pulled some thick gauged harness out with the old alarm wiring; which looks to me like it was to bridge connections into the immobilisers? Before it got immobilised it was running just fine.  Im at a loss to why the FP is getting no voltage; I thought maybe the FP was faulty (even though I havent even done 50km on the new pump) but no voltage at the harness plug.  Questions: Could it be he didnt reconnect the fuel pump when testing it after the old alarm removal (before installing the new alarm)?  Is this a case of bridging to the brake lights instead of the fuel pump circuit? It's a bit beyond me as I dont do a lot with electrical; so have tried my best to diagnose what I think seems to make sense.  Seeking advice if theres for sure an issue with the alarm install to get him back here; or if I do infact, need an auto electrician to diagnose it. 
    • Then, shorten them by 1cm, drop the car back down and have a visual look (or even better, use a spirit level across the wheel to see if you have less camber than before. You still want something like 1.5 for road use. Alternatively, if you have adjustable rear ride height (I assume you do if you have extreme camber wear), raise the suspension back to standard height until you can get it all aligned properly. Finally, keep in mind that wear on the inside of the tyre can be for incorrect toe, not just camber
    • I know I have to get a wheel alignment but until then I just need to bring the rear tyres in a bit they're wearing to the belt on the inside and brand new on the outside edge. I did shorten the arms a bit but got it wrong now after a few klms the Slip and VDC lights come on. I'd just like to get it to a point where I can drive for another week or two before getting an alignment. I've had to pay a lot of other stuff recently so doing it myself is my only option 
    • You just need a wheel alignment after, so just set them to the same as current and drive to the shop. As there are 2 upper links it may also be worth adding adjustable upper front links at the same time; these reduce bump steer when you move the camber (note that setting those correctly takes a lot longer as you have to recheck the camber at each length of the toe arm, through a range of movement, so you could just ignore that unless the handling becomes unpredictable)
    • I got adjustable after market rear camber arm to replace the stock one's because got sick of having to buy new rear tyres every few months. Can anyone please let me know what the best adjustment length would be. I don't have the old ones anymore to get measurements. I'm guessing the stock measurement minus a few mm would do it. Please any help on replacing them would be fantastic I've watched the YouTube clips but no-one talks about how long to set the camber arm to.
×
×
  • Create New...