Jump to content
SAU Community

Recommended Posts

I plan on scraping the PFC for a new ECU anyway.. I thought the PFC had no issues with timing fluctuations anyway, and it was just the newer ecu's

my car:

pfc, stock belt, ati balancer, big cams. see the bottom plot. that's too much timing scatter for my liking.

timingfluctuations_zps1952c7fa.jpg

Edited by black bnr32

I still think its the optical pickups in the cas that are the problems, because even with a 24/1 aem trigger disc i still saw issues, when we hacked up the cas with a hall effect pick up with 24/1 set up, had no problem.

It could well be. The optical slots are very narrow and they whizz past the sensor pretty bloody quick. I would have thought that diffraction effects might become apparent with such small openings. The apparent effect of different timing belts might compound the problem. Add in a few extra harmonics from a belt that does something different to what Nissan used and maybe some scary shit starts to happen.

What's really needed is a decent engine dyno type experiment where the output of the actual sensors on an optical CAS might be tested. Some effort spent on extending the drive and passing it through the engine's installed CAS onto a second CAS just used for the experiment would make a nice electro-mechanical engineering undergrad project.

I spun em up on a drill and still had the above mentioned problems. So it eliminated the belt theory.

I had a thought about that when you first mentioned it but didn't say anything because I'm not sure if it would be significant enough to cause any problems. But.....just in case.....AC electric motors do not spin at a constant angular velocity. They move at a range of angular velocities centred on the average velocity. For something like a power drill, I'm not sure how big that variation is relative to the average velocity. I think DC motors may also have some speed jitter (depending on the motor type - stepper motors certainly do).

As I said, possibly not relevant, but worth considering when designing experiments!

my car:

pfc, stock belt, ati balancer, big cams. see the bottom plot. that's too much timing scatter for my liking.

timingfluctuations_zps1952c7fa.jpg

Looks like 1000rpm fluctuations on the last rpm pull which I assume is 3rd gear. I agree that's too much scatter, mine is only a few hundred rpm max which I can live with

We spun them at varying rpm and rev synch captured the triggering waveforms and saw that the optical sensors missed triggers and also moved the edges, as in the tdc trigger was moved ahead or behind a 24 pulse trigger if that makes sense. With the hall effect trigger on the cas there was no such discrepancy. It was exactly the same events that were occurring on the engine and they were occurring at the same time. So the conclusion drawn was that the optical sensor was the problem, seeing that the same issue is common place with rbs, I thinks its a reasonable conclusion to draw, and to solve the problem any hall effect setup off the crank or even a cam only hall effect trigger will work.

I have never seen a hall effect trigger system not work.

You're right - when doing back to back of what the optical does compared to the hall effect when both are driven the same way, then if one works and the other doesn't, you've proved that hall effect is better. I still wonder if drive speed jitter might (or might not) have an effect on exactly why the optical sensors don't work, but ultimately it doesn't matter. They're demonstrated to have a problem, and really that's all we need to know.

I still think its the optical pickups in the cas that are the problems, because even with a 24/1 aem trigger disc i still saw issues, when we hacked up the cas with a hall effect pick up with 24/1 set up, had no problem.

agree with you on this...we had this same wavey cas signal on the dyno...replaced it with another cas and no more wavey. the bearings on both cas were fine but the signal was different. initially thought it might be cas because when we put timing light on the marks were moving forward and back about 10mm.

Edited by Badgaz

I still wonder if drive speed jitter might (or might not) have an effect on exactly why the optical sensors don't work, but ultimately it doesn't matter. They're demonstrated to have a problem, and really that's all we need to know.

Not sure on this only because the cas disc runs both cam (360) and crank (6) so ultimately if the cam belt is slapping away it still wouldn't affect the phasing or referencing of the cam to crank triggers because they are on the same disc. The two triggers are not separated by the cam belt. However by the optical sensor missing counts on the 360 cam triggers then you could see how the rpm trace variations occur. 3-10 missed counts and you have 3-10 degrees timing variations as can be seen on a few traced posted up. If the cam belt was slapping around at extreme levels then you would have other issues, but the rev signal trace itself would not be affected, as in, it would not change the phasing between cam and crank triggers because they are on the same disc

No I was talking in general about speed jitter - wondering whether diffraction effects might be affected by it and so on..... and this would extend to being driven by supposedly stable drives like a drill too.

One reason why the 360 slots might behave differently to the 6 slots could be because they are narrower. Would definitely affect diffraction (if diffraction was an issue).

This is how I made the cam bracket to hold a Honeywell gt101dc sensor and the trigger edge to bolt in place of the exhaust camgear washer.

Its all kept close to the gear and it attaches to the factory cas bracket.

Might help others if they want another way to go about it.

Nice work on your setup too mate! Another kit out there will certainly help the RB community.

post-12828-0-67657300-1421037497_thumb.jpg

post-12828-0-12164000-1421037521_thumb.jpg

  • Like 1

This is how I made the cam bracket to hold a Honeywell gt101dc sensor and the trigger edge to bolt in place of the exhaust camgear washer.

Its all kept close to the gear and it attaches to the factory cas bracket.

Might help others if they want another way to go about it.

Nice work on your setup too mate! Another kit out there will certainly help the RB community.

whats required to wire this up?

Ok guys I've had alot of PM's from people interested in buying a set once they go full swing so I've decided to compile a public list.

If you are interested in the second full batch post your interest and I'll add you to the list.

Currently the first batch has been delayed as the factory producing the first/sample batch has had no power since Sunday so they have not been able to ship my items but I was promised last night when I finally got them on the phone that they would ship today....

Cheers

Cameron

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • This. As for your options - I suggest remote mounting the Nissan sensor further away on a length of steel tube. That tube to have a loop in it to handle vibration, etc etc. You will need to either put a tee and a bleed fitting near the sensor, or crack the fitting at the sensor to bleed it full of oil when you first set it up, otherwise you won't get the line filled. But this is a small problem. Just needs enough access to get it done.
    • The time is always correct. Only the date is wrong. It currently thinks it is January 19. Tomorrow it will say it is January 20. The date and time are ( should be ! ) retrieved from the GPS navigation system.
    • Buy yourself a set of easy outs. See if they will get a good bite in and unthread it.   Very very lucky the whole sender didn't let go while on the track and cost you a motor!
    • Well GTSBoy, prepare yourself further. I did a track day with 1/2 a day prep on Friday, inpromptu. The good news is that I got home, and didn't drive the car into a wall. Everything seemed mostly okay. The car was even a little faster than it was last time. I also got to get some good datalog data too. I also noticed a tiny bit of knock which was (luckily?) recorded. All I know is the knock sensors got recalibrated.... and are notorious for false knock. So I don't know if they are too sensitive, not sensitive enough... or some other third option. But I reduced timing anyway. It wasn't every pull through the session either. Think along the lines of -1 degree of timing for say, three instances while at the top of 4th in a 20 minute all-hot-lap session. Unfortunately at the end of session 2... I noticed a little oil. I borrowed some jack stands and a jack and took a look under there, but as is often the case, messing around with it kinda half cleaned it up, it was not conclusive where it was coming from. I decided to give it another go and see how it was. The amount of oil was maybe one/two small drops. I did another 20 minute session and car went well, and I was just starting to get into it and not be terrified of driving on track. I pulled over and checked in the pits and saw this: This is where I called it, packed up and went home as I live ~20 min from the track with a VERY VERY CLOSE EYE on Oil Pressure on the way home. The volume wasn't much but you never know. I checked it today when I had my own space/tools/time to find out what was going on, wanted to clean it up, run the car and see if any of the fittings from around the oil filter were causing it. I have like.. 5 fittings there, so I suspected one was (hopefully?) the culprit. It became immediately apparent as soon as I looked around more closely. 795d266d-a034-4b8c-89c9-d83860f5d00a.mp4       This is the R34 GTT oil sender connected via an adapter to an oil cooler block I have installed which runs AN lines to my cooler (and back). There's also an oil temp sensor on top.  Just after that video, I attempted to unthread the sensor to see if it's loose/worn and it disintegrated in my hand. So yes. I am glad I noticed that oil because it would appear that complete and utter catastrophic engine failure was about 1 second of engine runtime away. I did try to drill the fitting out, and only succeeded in drilling the middle hole much larger and now there's a... smooth hole in there with what looks like a damn sleeve still incredibly tight in there. Not really sure how to proceed from here. My options: 1) Find someone who can remove the stuck fitting, and use a steel adapter so it won't fatigue? (Female BSPT for the R34 sender to 1/8NPT male - HARD to find). IF it isn't possible to remove - Buy a new block ($320) and have someone tap a new 1/8NPT in the top of it ($????) and hope the steel adapter works better. 2) Buy a new block and give up on the OEM pressure sender for the dash entirely, and use the supplied 1/8 NPT for the oil temp sender. Having the oil pressure read 0 in the dash with the warning lamp will give me a lot of anxiety driving around. I do have the actual GM sensor/sender working, but it needs OBD2 as a gauge. If I'm datalogging I don't actually have a readout of what the gauge is currently displaying. 3) Other? Find a new location for the OEM sender? Though I don't know of anywhere that will work. I also don't know if a steel adapter is actually functionally smart here. It's clearly leveraged itself through vibration of the motor and snapped in half. This doesn't seem like a setup a smart person would replicate given the weight of the OEM sender. Still pretty happy being lucky for once and seeing this at the absolute last moment before bye bye motor in a big way, even if an adapter is apparently 6 weeks+ delivery and I have no way to free the current stuck/potentially destroyed threads in the current oil block.
×
×
  • Create New...