Jump to content
SAU Community

Recommended Posts

Hi everybody

Looking to upgrade the inlet manifold on my rb30dett and just wanting to know if there's any options beyond hypertune out there that might fit my requirements. Specifically:

1) I definitely will be retaining the 6 x ITBs.

2) I want to run a 100mm/4" inlet diameter, in anticipation of going to a full 4" intercooler and turbo outlet system once I convert to a single turbo.

The last time I looked into this hypertune seemed to be the only item that could meet these requirements but I thought that since then something else might have entered the market. I basically want a nice big plenum with a quality, machined face to bolt on, seals properly, that flows nicely and distributes flow to the rear cylinder. The hypertune price range would be the upper end of what I'm hoping to pay and if anyone can recommend a good Australian distributor that I can chat to that would be great.

Also, are there any issues I might have particularly with a deck height that is now +38mm, eg: clearance with clutch mcs etc - I'm already assuming I may need to go to an r33 style clutch mc. I am currently running the factory fuel rail with 1000cc injectors but all the ones I've seen have factory mounts for the rail as well. But any other tips on clearances and fitment etc would be greatly appreciated. Thanks in advance.

4 inch intercooler pipes? Man... What's wrong with the 80mm?

Am currently running 22-23psi on a set of HKS 2530s. It has a built rb30 bottom end and big cams, so when I go to a single turbo (around t88 size or so) I will be upping the boost considerably.

EDIT: this is not intended to be a street/daily driver car.

Edited by dorifticon

Also, at what power level do ITB's become a hinderance over single?

CPC, custom plenum creations do plenums. So do RIPS in NZ. Both would make what you want.

Or modify the stock plenum, don't quote me, but RACEPACE did/do that?

The ITB's will always disturb the airflow and create a pressure drop across the port compared to a single TB manifold.

If you just want to make big power and less pressure drop through the system putting a single TB on the stock plenum is the cheapest way out.

If you are serious, a much larger volume plenum (which helps with distribution of flow) with a 100mm TB like you want is probably better and big piping, no flow restriction!

  • Like 1

The more boost you run the smaller the piping needs to be. Unless you are chasing over 600kw I would leave the stock piping in place.

Currently on 385kw or so (at the treads) but turbos are way undersized for my application. Would ultimately like to get into the 600's once fuel system (including switch to ethanol) is sorted.

The ITB's will always disturb the airflow and create a pressure drop across the port compared to a single TB manifold.

If you just want to make big power and less pressure drop through the system putting a single TB on the stock plenum is the cheapest way out.

I don't want to lose the off-throttle response or the effect of the brake booster on sudden switch from throttle to brake. It's one of the things I like most about the rb. I realise it makes tuning a PITA and may limit power, but have driven a single throttle and it's not for me.

Thanks for all the names/etc so far, will continue the research.

Currently on 385kw or so (at the treads) but turbos are way undersized for my application. Would ultimately like to get into the 600's once fuel system (including switch to ethanol) is sorted.

I don't want to lose the off-throttle response or the effect of the brake booster on sudden switch from throttle to brake. It's one of the things I like most about the rb. I realise it makes tuning a PITA and may limit power, but have driven a single throttle and it's not for me.

Thanks for all the names/etc so far, will continue the research.

That quote about smaller piping wasn't right, I am not sure what Scotty meant?

In any case, you can upgrade the piping but the biggest restriction will probably be the ITB's, in which case, the money spent upgrading pipe work is best done elsewhere. Unless you do change it anyway to go to a big single turbo then by all means upgrade to larger piping, but you will most likely on get a small gain in flow (less pressure drop) through piping.

That quote about smaller piping wasn't right, I am not sure what Scotty meant?

Have seen 500kw through the stock piping, now he is going for 600kw. I will let you know how he goes.

After seeing 350kw through 2.25 inch piping, 80mm should therefore easily flow 600 by my books. Just letting you know as most workshops would have upgraded it at much less power. The more you compress the air the smaller the pipes need to be, that much is obvious yeh?

perhaps the word boost should be replaced with air volume in this topic? since there are so many things changing in this setup (turbo, intake manifold, intake piping, power output) throwing around estimations and requirements for boost levels is pretty irrelevant.

no one is doubting 2.25 inch piping wont flow big numbers, i think the question should be 'is 4" piping worth it?' smaller piping flows less (or requires more boost) and dissipates less heat. probably not worth the effort to fit 4" though especially if it limits your plenum choices.

If the turbo outlet is only 2.5in why would the rest of it need to be 4in?

The turbo outlet is only 2.5" because the size of the compressor housing is such (diameter, thickness) that you couldn't easily make the outlet bigger. On top of that, centrifugal compressors basically work by turning air velocity into static pressure. The velocity in the compressor housing is very high, and you want that to slow down as gradually as possible (hence the shape of the volute of the housing). If you tried to take that same compressor housing out to, say, a 3" outlet, then you'd either have to be less gradual or make it a lot bigger (longer in the outlet). This would make for poor performance on the one hand and poor packaging on the other. I think we should ignore for the moment the fact that most such turbos then get installed with a nasty elbow directly off the outlet.

But the velocity in the 2.5" outlet is probably too high for good pressure drop characteristics if you were to keep the pipework at 2.5", so it make sense to go up to 3" or whatever is needed to get the air velocity back into a more reasonable range. And of course people will argue about what a sensible velocity range is and they will argue about what power level = what boost = what airflow without paying any attention to the type or size of engine or turbo. But we'd best ignore that too!

  • Like 1

no one is doubting 2.25 inch piping wont flow big numbers, i think the question should be 'is 4" piping worth it?' smaller piping flows less (or requires more boost) and dissipates less heat. probably not worth the effort to fit 4" though especially if it limits your plenum choices.

the piping setup in my 'R needs to be changed anyway, when I got the extra 38mm deck height from the rb30, I did a "temporary" hack and clamp job to extend the OEM rubber pipes and was never super happy with it. So this incremental cost of upgrading the piping (especially in light of everything else) should be not much. There's going to be a lot of pipe cutting and welding in any case for the single turbine setup.

In terms of whether it will be better or worse than the 80mm setup, I figure the stock power on a GTR was in the 200's, so upgrading the cross-sectional flow area by around 60% shouldn't be a bad thing if chasing power levels that are well over double the stock output.

Power should be slightly better if there aren't extra/tighter bends in it, and transient response will be slightly worse I imagine. Bang for buck it may be a waste, but that's for you to decide. Depends what you plan to use the car for.

Just remember stock boost is only one bar too, you will be running twice that most likely, so the pipes should flow around 50% more air from that alone, and the factory pipes were overkill for stock power.

Have seen 500kw through the stock piping, now he is going for 600kw. I will let you know how he goes.

After seeing 350kw through 2.25 inch piping, 80mm should therefore easily flow 600 by my books. Just letting you know as most workshops would have upgraded it at much less power. The more you compress the air the smaller the pipes need to be, that much is obvious yeh?

It will work, but it won't be efficient. Pressure drop through the pipe work alone might be 10psi at a random guess at high flows.

Assuming constant flow, the smaller the pipe will produce an increase in pressure.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Latest Posts

    • Have a vb in honour of the car comming back
    • It was a great, but typical track day, and some VB was ingested at the night time debrief 🤪
    • And so, to round this out, I couldn't be happier to confirm @MBS206 has decided to buy the car. He drove down from sunny QLD with a trailer last week and it is off to its new home today. I'll let Matt confirm on next steps but I understand broadly that the plan is to leave it pretty much as is, and just get some quality wheel time with a nicely balanced car that is pretty much track ready. There are a few a jobs still to be done first but nothing too major and I think its a very smart buy Dinner last night at the Paragon with a round of VBs (mostly) for Neil
    • Well, 50 pages and the end of a chapter for this car. We took it out for a shakedown at Wakie yesterday, and everything went well. There were a couple of niggles: - Oil cooler fitting leak - tightened, cleaned, stopped leaking - Radiator cap overflow fitting was leaking....Mark called it, the overflow fitting was threaded in and not tight....tightened, tested and held pressure - Small oil leak at the rear of the block, probably the turbo oil feed - too hot to get at it comfortably but probably just needs to be nipped up - leak at the driver's side rear brake line where it meets the hardline. Fitting wasn't loose, so Matt backed it off and back on, no further leaks - there's also a leak somewhere on the top of the fuel tank, maybe that cross over fuel line - that was has been left to fix when its on a hoist Otherwise than those niggles the car went great, turned great and stopped great so it was a very successful day out. I'm always really nervous when a car first hits the track after a long break, especially with a brand new engine as well but it was great. VID-20251011-WA0007.mp4  Big thanks to @The Bogan who dropped by and helped out, @MBS206 and my nephew Lachlan the apprentice.  Neil's wife Mel also surprised the hell out of all of us by dropping by; she's up in Tamworth these days but was travelling to Melbourne so had plausible deniability for turning up at the garage, it was great to see her but also obviously a bit sad all round.
    • Skyline R33 Series 2 sedan tail lights in excellent condition. These are becoming harder to find, especially in this state.    BOTH SETS ARE IN FANTASTIC CONDITION (REFER TO PHOTOS)    ✅ No broken covers or cracks ✅ Lenses are in flawless condition ✅ All rear mounting lugs intact ✅ Comes complete as pictured ✅ Perfect for restoration, replacement, or upgrade   These lights are ready to go, no surprises just quality OEM parts.   These are definitely one of the better sets we have seen in a while. With minimal wear and tear they will come as you see. Bear in mind they are not brand new they are almost 30 years old now. To find them in this condition isn’t easy they can only be obtained on the second hand market.   Australia Wide Postage Available At Buyers Expense. Silver Set:$850 Grey Set:$850 PM Me for purchase or any other questions  IMG_2166.dng IMG_2165.dng IMG_2172.dng IMG_2173.dng IMG_2174.dng IMG_2179.dng IMG_2180.dng IMG_2260.dng IMG_2258.dng IMG_2259.dng IMG_2261.dng IMG_2266.dng IMG_2273.dng IMG_2274.dng IMG_2276.dng
×
×
  • Create New...