Jump to content
SAU Community

Recommended Posts

  • Replies 48
  • Created
  • Last Reply

Top Posters In This Topic

Well like I said its got a different wheel for greater flow instead of response.

I'll be driving this car for a while before I would be comfortably building it for any one in case of any problems. If this works out well we will be able to do that to all OP6 turbine housings.

For the time been we will still be carry with standard and .82 rear ended PU high flows.

i think the result is impressive and on par with alot of 3076 results.

its making nearly 200kw at the 4000rpm mark which is well and truly on par, and it ramps on nice. considering the final output is also near enough to 300kw, for something that will bolt on and be very close to stock like appearance, i think we have a few too many whingers in this thread.

please take note of my reference to the words 'i think' and note that it is my personal opinion that you are whingers, to which i am entitled :cool:

lets not forget the value either!

LOL! this power is unbeliaable guys. Soon this turbo will be on mine! Guys Tao took me for a drive in this with the turbo on and it was just AMAZING! it was so torquay!!!!!!!!!!!!!!!!

sure it wasn't queenscliff?

Another Dr-Drift dyno run cut off early...rev it harder Sam :ninja:

They are still nosing over after 5500 though stao...badly

Stao's rear tires are not the 'grippiest' and we have been fully booked out... I was just doing him a favour and squeezing in a few runs to see if we could monitor and control boost. If this was a full tune we would have certainly strapped it in, played with with cam timing, etc etc...

ok fair enough then :P

As said about though, it does look a little lazy coming onto boost..but that could just be the ramp rate aswel.

Ramp of 13kph/s

Awesome results, but i'm really concerned about the manifold pressures. I want to know if you guys are monitoring the manifold pressures whilst holding the gate closed with the actuator stopper? im worried about excessive pressure doing damage long term (exhaust valves and rear turbine).

Agreed, I've had many discussions with Stao regarding going beyond what I recommend, and to his credit he's prepared to push the limit, learn along the way, and try new ideas. I would certainly not recommend anyone to push these turbos, or any turbo to their limits, without carefull monitoring and understanding of vitals.

Sam.

This version of PU high flow plus the SS-2 prototype is an example of pushing few factors to its limit in exchange for the most out standing response, and power.

First time you've ever seen 295rwkws with .63 turbine housing holding straight 18psi to red line with internal gate, or 250rwkws with 18psi < 2500RPM of a SS-2 right?

Experience, Materials, workmanship, knowledge, data, and engineering define certain extension of limit. There are no full definition of limits, and nothing is physically impossible. So we'll keep cracking.

Also we've done lots of researches and evaluations in parts and components that made up those 2x turbos that takes the edge. I will evaluate it for 100,000KMs with some data analyse. If every thing turns out in great order as expected then I will have no holding back and let our customers enjoy the benefit of the new concepts.

First time you've ever seen 295rwkws with .63 turbine housing holding straight 18psi to red line with internal gate

bombtrack got 297 with an I/G hks 2835 (.68) with drop in cams on an unopened RB25 on pulp on the chasers dyno... that's pretty close :)

First of all Good work.

I've personally seen this turbo before it was installed. Since Stao does not want to reveal the wheel sizes, its a 500HP rated CHRA in a .63 turbine housing. Which we've also seen Garrett GT3582 600HP CHRA in .63 turbines.

The exhaust manifold pressure and flow keeps the shaft spinning providing desired boost level. Any lose of exhaust manifold pressure or flow will result in boost drop. So wither you run a adjustable internal gate or an external gate, at 20psi the manifold pressure does not change.

If the components of the turbo is built to handle 20psi with decent tune then I don't believe it would cause any problems.

Edited by kwickr33

Pressure and flow are two different things altogether, The less exhaust manifold pressure the better.

As pressure builds up it fights against the spinning turbine wheel causing it to slow, hence boost drop off and high temps

The exhaust manifold pressure and flow keeps the shaft spinning providing desired boost level. Any lose of exhaust manifold pressure or flow will result in boost drop. So wither you run a adjustable internal gate or an external gate, at 20psi the manifold pressure does not change.

They are not talking about a drop in exhaust manifold pressure (that is what a wastegate effectively does to hold a consistent boost level). They are discussing too high exhaust manifold pressure caused by restricting the wastegate movement

Pressure and flow are two different things altogether, The less exhaust manifold pressure the better.

As pressure builds up it fights against the spinning turbine wheel causing it to slow, hence boost drop off and high temps

Actually as pressure builds in the exhaust manifold it pushes the turbine wheel faster and harder (this is why if we run a turbo without a exhaust manifold pressure release aka wastegate then turbos will run almost unlimited boost)... It also pushes harder back on the engine which is what is causing some people concern.

Actually as pressure builds in the exhaust manifold it pushes the turbine wheel faster and harder (this is why if we run a turbo without a exhaust manifold pressure release aka wastegate then turbos will run almost unlimited boost)... It also pushes harder back on the engine which is what is causing some people concern.

I know what you are saying there, but if the pressure cant escape fast enough (too much pressure in the turbine hosuing itself) than it will slow, due to the exhaust gas almost coming to a standstill because it has no where to go.

Which comes down to the turbine exducer sizing, dump pipes, wheel trims etc.

I cant see the exhaust gas coming to a standstill, it would be near supersonic. I see it as maximizing the turbo as the turbine will be at its maximum shaft speed. Yes it would be better to go to a larger housing but you pay the penalty of lag and that affects the best part of the powerband. How often are you at 7000 revs anyway?

So how much pressure is too much and how do you measure it? Perhaps it is good when the stock wastegates drop boost.

Yeah you can't see what the back pressure is doing by looking at a dyno plot - sometimes it can show up as the power falling over prematurely due to the tuner having to pull timing to avoid detonation before MBT. Funnily enough this dyno plot looks like what you could expect to see in that case, if it weren't for the claim that the early drop off is due to wheelspin. Silly rolling road dynos...

Will be interesting to see how it goes on a hub dyno, and how the engine/turbo lasts at that power level if its going to be used on the track at the power level at all?

At face value, very nice power level and spool for a convenient and affordable package :D

Didn't Mafia make over 300wkw with a .63a/r GT3076R?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • HFM BM57 has a "bad" knee point, IIRC. It's not the same thing as the later R chassis MC.
    • The ATTESSA is functionally identical to R34; there were a bunch of JDM models that continued ATTESSA including Fuga/Q70, Skyline/Q50, Cima etc as an option. All with Auto only and I think mostly for snow regions. AFAIK there were no AWD VR30DDTT sold in Australia - it is on my to do list to check regs for racing a LHD car in Targa/ATR/AASA/CAMS events because if I can get the auto to work it would be interesting to run a 4wd car The Ecuteck TCM tuning is the same model as their ECU tuning, they already have it for R35 and Dose's favourite, BMW. You buy "points" to allow your computer to be tuned, buy either a bluetooth (phone app) or bluetooth+USB+Key (phone and PC) dongle, and pay for a tune that will be locked to your tuner ( ). You can also access the tuning software yourself but 1. it is mega expensive and 2. these computers have a billion parameters that intersect, so how could you ever spend enough time on it to get a decent result.
    • Or, is it a case of what it is like owning an R series Skyline? NFI what the previous owner has done or fiddled with... Ha ha ha After reading through this thread, I went on a bit of a research about the Q50/Q60. Now I'm quite intrigued by them! Is the AWD in them more like a WRX where it's always AWD, or is it more like the ATTESSA in the GTRs? By the sound of this TCU tuning, this sounds like a case of someone has made some real software for it, and you just need the right piece of hardware, and then you license that specific vehicle/TCU. Or is this a case of the software will be really expensive so only a few tuners have it, and you still have to pay a license per vehicle?
    • By popular demand.. it was a coil. Got my hands on 1 new OEM coil, replaced with the one that made the less noise difference when I unplugged it while the car was running and started the car up. No stutter and the engine light was gone. I guess I’ll buy the other 5 they have lol
    • No, code 21 is very straightforward. It can only be the things described in that diagnostic flow. In fact it has no way of knowing that the spark plug resistance is out of spec.
×
×
  • Create New...