Jump to content
SAU Community

Recommended Posts

I suggest to check your IWG spring and perform a boost leak test. For an EFR8374 on RB26, boost should be well on around 3500rpm. 4000rpm is a little bit late

Thanks

Spring is the high boost cannister on 3 turns. In 3rd and 4th it will come on around 3700 etc. My car is a stroker, but stock bores so I'm bit gaining much displacement. Low compression, ported head, big valves, Tomei poncam A (small ones) not indexed yet (0 and 0 settings), also my squish pads are removed.

I'll check those hopefully this weekend and let you know what I find. I'm sure the cam changes will help.

When you say "it comes on at around 3700rpm", so this is not full boost? On a stroker RB you should be seeing about 20psi at that level.....On a RB30 I'm seeing 22psi by 3400rpm.

  • Like 1

When you say "it comes on at around 3700rpm", so this is not full boost? On a stroker RB you should be seeing about 20psi at that level.....On a RB30 I'm seeing 22psi by 3400rpm.

Correct.

With cams set to '0' and '0'

In 3rd gear from about a 25 mph punch (1,900 rpms) I will have the following with the electronic EFR wastegate solenoid bleeding boost:

3 psi = 2684 rpm

5 psi = 3046 rpm

10 psi = 3566 rpm

12 = 3713 rpm

13 = 3827 rpm (at this point my closed loop boost is activated and starts dropping duty to anticipate the "spike")

16 = 4030 rpm (duty is down to 14.5% bleed)

Time to go from 2500 rpms to 4000 rpms = 3.415 sec (for whatever this is worth).

With cams set to IN+2 and EX-4

In 3rd gear from about a 25 mph punch (1,900 rpms) I will have the following with the electronic EFR wastegate solenoid bleeding boost:

3 psi = 2689 rpm

5 psi = 3076 rpm

10 psi = 3636 rpm (new boost settings duty cycle starts dropping here to control spike better).

12 = 3785 rpm (boost duty dropped to 27.6% bleed here)

13 = 3883 rpm (at this point my closed loop boost is activated and starts dropping duty to anticipate the "spike")

16 = 4137 rpm (duty is down to 17.8% bleed)

Time to go from 2500 rpms to 4000 rpms = 3.152 sec (even though slower boost, the car is quicker by a marginal 1/4 of a sec)

From what is a pretty extreme change in cam positions, I didn't gain on boost threshold (even though I shortened the Lobe Separation Angle by 6 degrees!) but the car was a bit quicker. Now at these low rpms I'm sure this data isn't 100% perfect data, but you get the point that a pretty extreme cam changed (+2 intake and -4 exhaust) didn't bring down my boost threshold. Later I will try a different method by going back stock on the LSA, but moving both cams slightly advanced to see if it will spool quicker.

I'm also on 93 octane pumpgas and low compression ratio. Also on the Hpertune V2 90mm TB and ported head. I also have the squish pads removed so perhaps I'm just going to wrong way with my build and should start aiming for increasing top end power. The 4k is totally livable...and transient response from this turbo is absolutely incredible, but yes, I did expect more bottom end. Perhaps I have an engine issue, but CR and valve clearances came back good on tests. Car seems to be very fast.

post-136202-0-17911100-1467053065_thumb.jpg

How low is low compression?

When is it going on the dyno for a proper tune?

4th gear will spool considerable earlier FYI. 3700 rpms is 15.1 psi...easily would see 20 by 4k in 4th just ramping it up.

My cold compression numbers from a couple weeks ago. I think I'm around factory CR...didn't honestly finish the calculations, but with the decking and valve relieving in the head and the squish pads gone it seems about right with the pistons I ordered.

1 - 165

2 - 170

3 - 165

4 - 172

5 - 170

6 - 170

Just went and set cams backwards a bit by lengthening LSA... Exhaust 2 deg advanced, Intake 2 deg ret. Car definitely idles better and drives smoother, but again seems noticeably weaker in the mid range but very strong on top. Boost threshold is about the same...no real changes otherwise.

But sticking to the thread my 3rd gear time while rolling in from low rpms (like 3k) and timing from 4500 rpm to 8k rpms is 5.184 seconds if anyone can get data at 16.5-17 psi (waves a little) from some logs I would appreciate it.

Spring is the high boost cannister on 3 turns.

the high boost canister is sprung fairly conservatively - i typically like to run 6-7 turns of preload on it. Or a turbosmart 26psi IWG with 4mm preload

  • Like 1

the high boost canister is sprung fairly conservatively - i typically like to run 6-7 turns of preload on it. Or a turbosmart 26psi IWG with 4mm preload

I added 3 turns to it...it did help a tad for sure but still starting at 2k rpms in 3rd gear equates to 17 psi at 4,200 rpms with the cams set like they are still.

I added 2 logs of the same pull - Yes I see it's rich on spoolup just wanted to make sure to include throttle position, rpms, boost, ignition advance and boost control output. Also note it just "touched" my knock limit at around 4200 rpms and ended up pulling timing (pulled 4.5 deg is what I have it set to) because I have it pulling at anything over a knock count of 100. It was 104 and then it pulled so the timing map is usually set at the difference between the ignition advance and the amount pulled (4.5 deg) - hence the dip in my timing after 4200 rpms.

Even though idle was a bit rougher with the cams the other way, the car was faster for sure on bottom and mid-range. I'll get some more logs tonight to compare. What I think I may end up with is cams at base separation but both cams advanced (maybe 3-4 deg advanced each cam)

Also I definitely will do a boost leak test this week.

And one more thing, I'm only on 3" exhaust...but it's pretty well made 3" with minimal bends and is all mandrel throughout. I'll be going to 3.5" later, but didn't think that would be a big restriction to spoolup at this point.

Also note I am on PUMPGAS. I know E85 is much better, but I don't have access to it here so I hope you guys aren't comparing my numbers to E85 spoolup times.

post-136202-0-22487000-1467123448_thumb.jpg

post-136202-0-02492900-1467123454_thumb.jpg

post-136202-0-15589800-1467124447_thumb.jpg

How much timing are you putting into the motor coming onto boost?

About 30 deg at 7 psi - look at the pictures above. Forget the dip in that chart there was a touch of knock at 4200.

Take some timing out.. try at 0kPA at 30 degrees and drop it so by 0.5bar you're under 25 and by 1 bar you're under say 20.. I think you have too much timing for premium unleaded fuel... and potentially noses over MBT affecting your spool and causing knock.

Stock knock sensors...great is there more I don't know? I'm trying to tune for zero knock and have been pretty successful so far. Cam changes are changing what timing I can run fyi.

Just ran another log. 5th gear easily hits 17.1 psi at 3500 rpms (almost exactly). Just hard to make it hit the numbers in 3rd gear...it's around 4k every time.

I'll post some videos in a bit.

food for thought (feel free to ignore).

advance the intake around 3~4 degrees, retard the exhaust say 2

run less timing, like 10 degrees less that whatever you have at the moment

lean it out coming onto boost

so at 0kpa you're say 13:1

by 100kpa you're about 12.5

past 100kpa 12

past 120kpa under the 12s

I will try them.

Videos of how the car drives. Also added a screenshot of a log of a street pull I just did on my 255/40/17 hankook RS3's.

1st through 3rd to redline in 3rd (8k) from dead stop is 9.0 seconds.

a little first gear punch from low rpms and roll through a couple gears

3rd gear pull

3rd gear threshold test.

post-136202-0-95377500-1467179169_thumb.png

Tom is yours a T4 TS IWG ?
Did you run the stock actuator and or have any issues with boost control ?

For anyone interested, here is my 7670 dyno graph.

Car is an Evo V. As you can see, it's fairly responsive.

Not pushing it at all on 98, only 20 psi.

attachicon.gifEvo_98.jpg

For anyone interested, here is my 7670 dyno graph.

Car is an Evo V. As you can see, it's fairly responsive.

Not pushing it at all on 98, only 20 psi.

attachicon.gifEvo_98.jpg

2.3L and T4 twinscroll innit http://www.sau.com.au/forums/topic/451166-post-your-evo/page-3#entry7752674

Still, spools super super early.

Edited by Skepticism
Guest
This topic is now closed to further replies.



  • Similar Content

  • Latest Posts

    • Did this end up working? Did you take some pictures?
    • And finally, the front lower mount. It was doubly weird. Firstly, the lower mount is held in with a bracket that has 3 bolts (it also acts as the steering lock stop), and then a nut on the shock lower mount itself. So, remove the 3x 14mm head bolts , then the 17mm nut that holds the shock in. From there, you can't actually remove the shock from the lower mount bolt (took me a while to work that out....) Sadly I don't have a pic of the other side, but the swaybar mounts to the same bolt that holds the shock in. You need to push that swaybar mount/bolt back so the shock can be pulled out past the lower control arm.  In this pic you can see the bolt partly pushed back, but it had to go further than that to release the shock. Once the shock is out, putting the new one in is "reverse of disassembly". Put the top of the shock through at least one hole and put a nut on loosely to hold it in place. Put the lower end in place and push the swaybar mount / shock bolt back in place, then loosely attach the other 2 top nuts. Bolt the bracket back in place with the 14mm head bolts and finally put the nut onto the lower bolt. Done....you have new suspension on your v37!
    • And now to the front.  No pics of the 3 nuts holding the front struts on, they are easy to spot. Undo 2 and leave the closest one on loosely. Underneath we have to deal with the wiring again, but this time its worse because the plug is behind the guard liner. You'll have to decide how much of the guard liner to remove, I undid the lower liner's top, inside and lower clips, but didn't pull it full off the guard. Same issue undoing the plug as at the rear, you need to firmly push the release clip from below while equally firmly gripping the plug body and pulling it out of  the socket. I used my fancy electrical disconnect pliers to get in there There is also one clip for the wiring, unlike at the rear I could not get behind it so just had to lever it up and out.....not in great condition to re-use in future.
    • Onto the rear lower shock mount. It's worth starting with a decent degrease to remove 10+ years of road grime, and perhaps also spray a penetrating oil on the shock lower nut. Don't forget to include the shock wiring and plug in the clean.... Deal with the wiring first; you need to release 2 clips where the wiring goes into the bracket (use long nose pliers behind the bracket to compress the clip so you can reuse it), and the rubber mount slides out, then release the plug.  I found it very hard to unplug, from underneath you can compress the tab with a screwdriver or similar, and gently but firmly pull the plug out of the socket (regular pliers may help but don't put too much pressure on the plastic. The lower mount is straightforward, 17mm nut and you can pull the shock out. As I wasn't putting a standard shock back in, I gave the car side wiring socket a generous gob of dialectric grease to keep crap out in the future. Putting the new shock in is straightforward, feed it into at least 1 of the bolt holes at the top and reach around to put a nut on it to hold it up. Then put on the other 2 top nuts loosely and put the shock onto the lower mounting bolt (you may need to lift the hub a little if the new shock is shorter). Tighten the lower nut and 3 upper nuts and you are done. In my case the BC Racing shocks came assembled for the fronts, but the rears needed to re-use the factory strut tops. For that you need spring compressors to take the pressure off the top nut (they are compressed enough when the spring can move between the top and bottom spring seats. Then a 17mm ring spanner to undo the nut while using an 8mm open spanner to stop the shaft turning (or, if you are really lucky you might get it off with a rattle gun).
    • You will now be able to lift the parcel shelf trim enough to get to the shock cover bolts; if you need to full remove the parcel shelf trim for some reason you also remove the escutcheons around the rear seat release and you will have to unplug the high stop light wiring from the boot. Next up is removal of the bracket; 6 nuts and a bolt Good news, you've finally got to the strut top! Remove the dust cover and the 3 shock mount nuts (perhaps leave 1 on lightly for now....) Same on the other side, but easier now you've done it all before
×
×
  • Create New...