Jump to content
SAU Community

Recommended Posts

  • Replies 97
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Great work Shaun and Stao,

I'm interested in seeing how this progresses. For those who doubt the theory consider bernoulii's theorem.

First assume the exhaust gas is not getting compressed (density is constant) and flow within the system is ideal, then the flow out of the head must equal the flow out the turbo. If the area to the turbo is halved then its velocity must increase by a factor of approximately 1.4 (Bernouli's theorem, Conservation of Energy). Momentum is then consequently increased by about 40% => 40% faster spool time.

So in an ideal theoretical world - it works great but a lot of R&D is required to reduce ineffeciences.

Stao: Is this sort of setup possible in one of your super street turbos? ;)

You mention twin scroll manifold....youre shutting off 3 cylinders until 4000rpm?

Twin scroll turbo, single outlet manifold for this setup. You want to make all the gas go through the turbo faster by making the area smaller until it starts to create backpressure in which case you begin opening the valve on the turbo slowly until it eventually is open entirely flowing entirely AFAIK.

i still don't understand how this works, the wheel and housing stays the same size, in my head it's like putting a restrictor in any part of the manifold, the diametre decreases, so the velocity increases through the restrictor, but as soon as the diametre increases again, it simply slows down again. i know this "restrictor" is immediately before the turbo, but it's still the same volume being pushed through the same area around the wheel.

i can only think there is some merit to the idea of the pressure being directed onto a more efficient part of the blades.

guys, my set up is a full divided twin scroll 6 boost amnifold and a gt4094 full twin scrioll turbo, what has happened is part of the twin scroll in the exhaust housing has been removed and fitted with a flap. the flap closes the rear most port of the twin scroll housing but at 45 degrees, this does 2 things . directs all 6 exhaust gases through the front scroll of the turbo exhaust housing, and 2, because its at 45 degrees reduces heat build and helps to increase the gas flow.

you do not do any mods to the manifold what soever.

as mentioned above, i run a link g4 ecu, i am going to fit a linear electric actuator, wired through a relay and driven by the ecu output using rpm to determine the gate opening piont.

thanks again for the contributions guys. will update as and when

You mention twin scroll manifold....youre shutting off 3 cylinders until 4000rpm?

The exhaust gases from 3 of the cylinders on one side of the manifold travels straight through to one scroll of the turbo housing and the exhaust gases from the other 3 cylinders enter their own scroll of the turbo housing but are redirected to join the same scroll of the turbo housing.

This redirecting occurs within the turbo housing itself.

This way the exhaust flow from all 6 cylinders are using only one scroll of the twin scroll turbo until the point that the valve is opened.

I am guessing when the valve does open you might get a small dip in boost pressure as the exhaust flow has to start from scratch on the second scroll?

I would assume so Harey, unless you can open it slowly.

My design didnt modify anything, it's removable and between the TS manifold and TS turbo housing as I wanted to keep the TS when the flap was open. I ended up not making it as the GTX4508 turbo I designed it to go under was too big to fit in the engine bay with 3 inches added to the manifold height.

I would assume so Harey, unless you can open it slowly.

My design didnt modify anything, it's removable and between the TS manifold and TS turbo housing as I wanted to keep the TS when the flap was open. I ended up not making it as the GTX4508 turbo I designed it to go under was too big to fit in the engine bay with 3 inches added to the manifold height.

Ah ok so your design is an piece that sits in between the manifold and turbo housing? So would raise the turbo up by the amount of your part.

GTX4508 turbo lol ur a nutter :)

Interesting bit of gear. I've also made a prototype with the similar sort of swing valve, the problem I've found is the exhaust manifold pressure on the flapper valve was too strong for the actuator to engage, which it never opens. But there are ways around it.

Can just you just use a very long lever with lots of mechanical advantage and a strong solenoid?

i still don't understand how this works, the wheel and housing stays the same size, in my head it's like putting a restrictor in any part of the manifold, the diametre decreases, so the velocity increases through the restrictor, but as soon as the diametre increases again, it simply slows down again. i know this "restrictor" is immediately before the turbo, but it's still the same volume being pushed through the same area around the wheel.

i can only think there is some merit to the idea of the pressure being directed onto a more efficient part of the blades.

You are using a twin scroll turbo so the turbo doesn't stay the same size.

Wouldn't it be better to switch it on load rather than rpm?

Ultimately you need a 3D map with rpm and boost (not load).

Edited by Rolls

now i want one :(

maybe the next build.

im already schemeing ways of doing the flap internal to the manifold rather than the turbo housing.

and trying to make it so the gasses dont load it up too much to open with an actuator.

hmmm, time to start drawing.

You are using a twin scroll turbo so the turbo doesn't stay the same size.

ok so the twin scroll stays separated right up until exiting the wheel? i was under the impression it was only separated til just before the wheel.

i'd like to see this thing tested on track cars, additional moving parts with track temps makes me nervous.

i would rather see a back swept design, which is spring loaded (adjustable) which is opened by exhaust gases, once the exhaust gases build up enough pressure, the flap starts opening, once they reduce, it closes back up. the design could be much simpler, with less parts to fail.

  • 1 month later...

The only reason why you can't do that Nisskid is due to the fact that it would eliminate the purpose of having the twin scroll turbine

housing as you wouldn't be able to block the center where the gas switches from one side to the other. You would how ever be able to run it like a standard v-band housing, even though you would be utilising a modified twin scroll housing and a divided manifold.

Hows it going with this anyway? Any more results? Looking at doing this with my build in the near future.

ok so the twin scroll stays separated right up until exiting the wheel? i was under the impression it was only separated til just before the wheel.

If you did that the turbo still sees the same mixed exhaust pulses, it has to be separated the entire way otherwise it won't be of any benefit, hence the separating takes up space and the AR is reduced for the same physical size.

By the way has anyone thought of using a stepper motor, similar to those found on the intakes of some cars in reference to boost pressure? Just use the ecu to put out a Pulse width modulated signal in accordance to boost.

You don't need to take it too full boost as its only when the engine is trying to begin to spool a turbine that takes the longest, so say if desired boost level is 24psi just make it full open at 14psi.

By doing that you eliminate any of the issues with exhaust restrictions, boost spikes, etc as the system would be regulated via the wastegate. Realistically rpm wouldn't really matter as its only operating on boost pressure imo.

Also the stepper motor running of a pulse width would be able to be opened gradually rather than straight open and shut

Having just read a thread about tuning VCT turbos on a 1uz, you need to remember that when the valve is shut, it has a big effect on the Volumetric efficiency of the engine, fuelling and timing changes will be massive compared to when the valve is open

I think the guy who did it ended up using an exhaust manifold pressure sensor and having the valve reference it to boost pressure. Basically he said you can make heaps of boost down low, but if the valves(s) are shut to make the boost, then the motor wont make any power. BTW it was all ecu controlled.

Edited by Adriano

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Does that German restaurant still exist in the old place out the NW end of Goulburn? When I say "out the NW end of"...I am really being vague. It was 1997 when I was last there, and the only point of reference I can recall is that it was on the opposite side of the main drag from the big merino. And when I say "opposite side of the main drag", I don't mean "on the main drag". It was either a couple of streets back from there, or might have even been out in the sticks a bit further. Was an old farm building or mill or somesuch. And when I say "the big merino" I might actually be thinking of a completely different part of town, because I just looked on maps and the big bugger is not where I remembered him to be! The food was good, consisting largely of various German mystery-meat sausage/loaf things and kartofflen.
    • So while the second sentence is completely correct and the whole point of the conversation, the first sentence bears consideration. If this bloke is just hoping to throw big turbos on and drive it around, because there are no helpful facilities at all in his tropical paradise** then he likely has zero chance of even knowing what the TP is on the last column in the stock maps, let alone know whether the ECU is operating anywhere near it or past it. So the point is very very moot. And, per what I said before, at stock boost on those turbos, you may well be off the end of the map. **I'm just back from Vanuatu, so I know exactly what small Pacific nations can be like wrt paradise without requisite facilities. But it's not even that simple. I put a high flow on my car and had to drive it around with a proper tune because of the lack of opportunity*** to put the bigger AFM and injectors into it to allow it to be tuned. I had to turn the boost down to less than I had before, and back off the boost controller's ramp, because it was exploring parts of the map that it didn't drive in before, and really couldn't access for tuning on the dyno either, and so was pinging. It was still well within the last column, because when I first**** set up the Nistune on the Neo I rescaled all axes of the maps to give some more space to explore. ***Family dyno was broken ****This was 13 years ago, and the TIM thing wasn't a thing then and so TP would definitely grow when pushing past the stock tune's limits.
    • Yep, this bit another local owner. I caught it before putting the transmission back into the car, what I noticed was the pressure plate fingers weren't flat and even. It's more obvious with the pull style clutch because the throwout bearing ring was visibly not flat once everything is put together. Nismo should really update their instructions to call out this specific detail. I'm not even sure the clutch as-shipped orients everything properly.
    • It ended up being that orientation of the float hub in relation to the clutch disk, when I installed it, I heard a loud click and being stupid, I decided to not take it a part and check it. The hub didn't properly align with the clutch disk and was causing the issue. Definitely an odd one! Dahtone Racing was able to fix me right up, stand up blokes!      
    • Right, but I'm saying on the stock ECU measured airmass from the MAF is no higher than stock. So it's accounting for the higher flow rate iso-manifold pressure. You just have to keep turning down the boost until you're within the stock tune's load scale. If you run off the end there's no telling what will happen. This does mean there's zero benefit to the turbos you're running vs stock, if anything it's just a straight downgrade because the transient response is worse, you don't even get the ECU's boost solenoid helping to pull the wastegate closed during initial spool, and peak power is only whatever the factory map can give you before you hit the R&R corner. On a -9 I would bet that you would have to change out the wastegate spring once you have a real ECU and you're tuning it for real. I'm not saying this is a remotely ideal state of affairs, it's just a way to keep it driveable until you can get a proper tune done.
×
×
  • Create New...