Jump to content
SAU Community

Recommended Posts

I already said the comparison is pointless unless we use the same dyno with same car. I didn't make any of those sheets either.

To get 200rwkws with 3076 .82 by 4000RPMs that is possible with race fuel and cam gears which you can add heaps of timing down low. But I haven't seen any one made that with all stock parts.

Or use a 71mm comp wheel with cam gears. But I think its hard to crack 300rwkws with 98 fuel.

I can't find any that come even close to 200rwkw at 4000rpm... Care to point me in the right direction?!?

See this is a baby 52T ATR43g2 high flow in .63 rear with cam gear and 98 fuel. Its pretty close to 200rwkws by 4000RPMs. But Its going to be maxed around 270rwkws ish. If you run Race fuel in that you will get more then 200rwkws by 4000RPMs maxing out at 300rwkws.

253rwkwsop6highflow.JPG

No race fuels, no cams. They do it.

I dont wish to debate the garrett vs your turbo, I just wanted to point out it was a poor comparison.

One further thing you may want to consider is how long the curve stays concave. The above graphs show the 3076 has a far more convex curve. This would be highly appealing to many people looking for as much area under the curve as possible.

SimonR32, majority of results I found were on this site, search and yee will find. It has been some 6 months again, I since purchased a 3037 (and ironically am now selling it) and havent looked since.

For once more I've said the comparison is pointless unless certain conditions are met (which is not), and I'm not the person who posted them or responsible for their actions.

I've seen Simon-R32's results. How ever that is running off .63 rear housing with a 44mm external gate alone with all other mods. If I do all those to my test car then I can also get his result. He's not running 98 fuel either.

After reading through his thread and understood what he've gone though for his result would you just bolton a 3076 in .63 int gated rear to your factory setup and hopping for 300rwkws with pump fuel?

How ever my goal is building a solid bolton turbo that can produce such power with less as possible modifications done to the factory package.

If I modify my car to the stage as his and selling my services to others based on that result, I call that fraud. I'm not trying to modify my setup to bring out the best out of a turbo, but trying to build a turbo to bring out the best of a "stock setup".

To me GT3076 in .63 rear internally gated can not make a genuine 300rwkws with fully stock setup and 98 fuel. From my experiment It will drop lot of boost with standard actuator, replace it with a high pressure valve and gate controller, it creepes so much heat that turned it self red hot and you lose power after every run.

SimonR32, majority of results I found were on this site, search and yee will find. It has been some 6 months again, I since purchased a 3037 (and ironically am now selling it) and havent looked since.

Look again, I think your memory has failed you :)

Look again, I think your memory has failed you :banana:

I agree, I cant see any 3076s (0.82 housing) that make 200rwkw at 4,000rpm on 98 fuel.

I can see a few HKS 2835 Pro S setups that make 200rwkw at 4,000rpm but even they need E85 fuel for that.

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

So the turbo above doesnt even meet your requirement of 200rwkw @ 4000rpm but your saying a larger turbo (56T) will?

Surely with the number of them out there a real life example would be available if it was such an easy thing.

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

Using wheels speed is inaccurate unless you know diff ratios, wheel/tyres sizes etc. and this is why you are being misguided!

The 56T is a 0.84 rear and 52T is a 0.63 rear, so a bigger compressor and bigger exhaust housing would make for about 700-1000rpm laggier yes!

Edited by SimonR32
Using wheels speed is inaccurate unless you know diff ratios, wheel/tyres sizes etc. and this is why you are being misguided!

The 56T is a 0.84 rear and 52T is a 0.63 rear, so a bigger compressor and bigger exhaust housing would make for about 700-1000rpm laggier yes!

Which is why I have not made point to be exact.

It has also been documented that there are gains to be had in the larger housing over the smaller one. The added volume aids in lower combustion temperatures and more timing can be wound into the motor.

One correction to my 'claim' that has shed many a tear it seems, results were more consistent when using an exhaust cam gear.

You are comparing Dyno Dynamics readings with a Dynapack reading - it can't really be done.

yes it can.... Dynapak has a correction mode that will give it DD readings to within a kw or 2 :banana:

a well tuned RB25 with a 3076 should achieve close to the 200rwkw mark by roughly 4000RPM. I am talking about an internally standard motor, no cams.

on pulp... a 3071/2835 will just make it... but only if you reeeealy push it

fwiw...

this is my car: tuned on the same dyno (trent @ status)

unopened RB25 with an HKS 2835 pro s, (3071 w HKS spec .68 rear). I am running a greddy rb26 ex cam gear, hybrid GT intercooler, stock throttle body, plenum etc

the red line is BP ultimate and the blue line is manildra e85

@ 4000 rpm pulp makes 190rwkw and e85 makes 210rwkw

gallery_36777_3194_124976.jpg

Larger the trim is the more vertical power behavior you get. To get a smooth build up of power you need to run a large comp housing with a small trimmed mid size comp wheel.

I wouldn't call the smoother the better. turbos do produce this vertical power increasement has a very sharp and strong punch on acceleration. while the build up turbo would give a lot smoother sort of feel.

But if you are dragging, The car that reaches peek power and torque quicker is more likely to win.

We can build them to do either, so I would say it depends on people's preferred driving ability.

I think your above power curve of the ProS is similar to this one here:

atr43G363295rwkw.jpg

Its a customized GT30 wheel running on stock cams and 98 fuel. That would be the most responsive towards 300rwkws as you can get. Car wasn't strapped down, had plenty wheel spin.

Wow! Full boost before 2500 and 250 killerwasps!

Dragon eggs for sure.

Yes Stao I do agree the concave curve would feel faster, although I disagree that it is likely to win. I would say it is fair to say it would have more traction issues for the same final output :banana:

Only issue with that last dyno plot tao is the power falls over after 5,600rpm. I wonder how far it would fall if you kept going till 7,000rpm?

But yes its quite responsive, very impressive. Hard to have everything I suppose.

that's true... the 2835 is still going strong by my 7400rpm limit (not on that particular 6800 graph, just take my word lol)

unopened RB25 with an HKS 2835 pro s, (3071 w HKS spec .68 rear).

Is the exhaust housing the the only difference between the HKS 2835 pro s and the Garrett 3071?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • For DBA, check out their guide table here. https://dba.com.au/wp-content/uploads/2023/01/Direct_Replacement-Guide-2021.2.pdf   Additionally they have some other guides and info on how to make sure you choose the right pad.
    • Sorry, just assumed that talk of coloured pads meant EBC red/green/yellow/shit stuff. I don't know the DBA pads, but it's a reasonable bet that they will be OK. DBA make good stuff generally. Those 4000 series rotors I linked to are very good. I may well replace the RDA rotors I have with those when required.
    • The average previous owner for these cars were basically S-chassis owners in the US. Teenagers or teenager-adjacent. I often tell people that neglect is easier to fix than something that was actively "repaired" by previous owners.
    • Update 3: Hi all It's been a while. Quite a lot of things happened in the meantime, among other things the car is (almost) back together and ready to be started again. Things that I fixed or changed: Full turbo removal, fitting back the OEM turbo oil hardlines. Had to do quite a bit of research and parts shopping to get every last piece that I need and make it work with the GT2860 turbos, but it does work and is not hard to do. Proves that the previous owner(s) just did not want to. While I was there I set the preload for the wastegates to 0,9bar to hopefully make it easier for the tuner to hit the 370hp I need for the legal inspections that will follow later on. Boost can always go up if necessary. Fitted a AN10 line from the catch can to the intake hose to make the catchcan and hopefully the cam covers a slight vacuum to have less restrictive oil returns from the head and not have mud build up as harshly in the lines and catch can. Removed the entire front interior just shy of the dashboard itself to clean up some of the absolutely horrendous wiring, (hopefully) fix the bumpy tacho and put in LED bulbs while I was there. Also put in bulbs where there was none before, like the airbag one. I also used that chance to remove the LED rpm gauge on the steering column, which was also wired in absolute horror show fashion. Moved the 4in1 Prosport gauge from sitting in front of the OEM oil pressure gauge to the center console vents, I used a 3D printed vent piece to hold that gauge there. The HKB steering wheel boss was likely on incorrectly as I sometimes noticed the indicator reset being uneven for left vs. right. In the meantime also installed an airbag delete resistor, as one should. Installed Cube Speed premium short shifter. Feels pretty nice, hope it'll work great too when I actually get to drive. Also put on a fancy Dragon Ball shift knob, cause why not. My buddy was kind enough to weld the rust hole in the back, it was basically rusted through in the lowermost corner of the passenger side trunk area where the wheel arch, trunk panel and rear quarter all meet. Obviously there is still a lot of crustiness in various areas but as long as it's not rusted out I'll just treat and isolate the corrosion and pretend it's not there. Also had to put down a new ground wire for the rear subframe as the original one was BARELY there. Probably a bit controversial depending on who you ask about this... but I ended up just covering the crack in the side of the engine block, the one above the oil feed, with JB Weld. I used a generous amount and roughed up the whole area with a Dremel before, so I hope this will hold the coolant where it should be for the foreseeable future. Did a cam cover gasket job as the half moons were a bit leaky, and there too one could see the people who worked on this car before me were absolute tools. The same half moons were probably used like 3 times without even cleaning the old RTV off. Dremeled out the inside of the flange where the turbine housing mates onto the exhaust manifolds so the diameter matches, as the OEM exhaust manifolds are even narrower than the turbine housings as we all know. Even if this doesn't do much, I had them out anyways, so can't harm. Ideally one would port-match both the turbo and the manifold to the gasket size but I really didn't feel up to disassembling the turbine housings. Wrapped turbo outlet dumps in heat wrap band. Will do the frontpipe again as well as now the oil leak which promted me to tear apart half the engine in the first place is hopefully fixed. Fitted an ATI super damper to get rid of the worn old harmonic balancer. Surely one of the easiest and most worth to do mods. But torquing that ARP bolt to spec was a bitch without being able to lock the flywheel. Did some minor adjustments in the ECU tables to change some things I didn't like, like the launch control that was ALWAYS active. Treated rusty spots and surface corrosion on places I could get to and on many spots under the car, not pretty or ideal but good enough for now. Removed the N1 rear spats and the carbon surrounding for the tailpipe to put them back on with new adhesive as the old one was lifting in many spots, not pretty. Took out the passenger rear lamp housing... what do you know. Amateur work screwed me again here as they were glued in hard and removing it took a lot of force, so I broke one of the housing bolts off. And when removing the adhesive from the chassis the paint came right off too. Thankfully all the damaged area won't be visible later, but whoever did the very limited bodywork on this car needs to have their limbs chopped off piece by piece.   Quite a list if I do say so myself, but a lot of time was spent just discovering new shit that is wrong with the car and finding a solution or parts to fix it. My last problem that I now have the headache of dealing with is that the exhaust studs on the turbo outlets are M10x1.25 threaded, but the previous owner already put on regular M10 nuts so the threads are... weird. I only found this out the hard way. So now I will just try if I can in any way fit the front pipe regardless, if not I'll have to redo the studs with the turbos installed. Lesson learned for the future: Redo ALL studs you put your hands on, especially if they are old and the previous owners were inept maniacs. Thanks for reading if you did, will update when the engine runs again. Hope nothing breaks or leaks and I can do a test drive.
×
×
  • Create New...