Jump to content
SAU Community

Recommended Posts

This build was primarily started  to alleviate the issue of having too much lag for a street car, in 2012 I had replaced the factory twin turbos with strengthened RS581 LeMans turbos. This turned into a bit of a mistake as I found the power delivery to be very linear and the car was incredibly doughy at low RPM. At the time I was very unaware of what a responsive twin turbo RB26 should feel like and I just accepted the lag as the car was making more power.

IMG_2107.thumb.JPG.4f1644ca559f14a83c505ec10c81fd63.JPGIMG_2312.JPG.cd32179e6492044e5af858da7af45550.JPG

The budget of an EFR setup has been a huge obstacle for me and as the years have gone by I have finally assembled and decided what is the best combination for my needs. 

 

IMG_2380.JPG.d0c35e9d38543bfc8046962ec26e1e56.JPG

 

My power limit of 300-350kW would rule out the EFR 8374 which was what I had been setting my sights on - but being greedy for more response drove me to the 7670. I also wanted the build to be simple and less complicated which is with I went with the IWG option.                                                                                                                        

The last purchase I made was for the turbo and I wanted to get straight into it - I didn't want to wait and give my money to a garage to fit everything up, it was also my first real overhaul on any car but decided to hack away at it and give it a go.

Conditions were not perfect, I had to remove the twins and all the factory hoses and piping, this was done outside after work so I only had a few hours of daylight each day.

IMG_2388.thumb.JPG.737ae8b48c2973ddaabf5f2ee515ea5d.JPG

Starting from the top was a good approach and everything with a nut or bolt was loosened and removed  to declutter and improve morale on the task ahead.. 

IMG_2389.thumb.JPG.f9587f2deb48a8f87159ee16d14a14fc.JPG

IMG_2391.thumb.JPG.056be5d4b46a5fad539edb5e10558f6f.JPG

 

IMG_2395.thumb.JPG.158296a7ad9259ca34cc6ce176c65f30.JPG

More and more parts had to come off the car which was daunting to begin with but everything had a bag to go in so I could be reassembled without any headaches, the A/C was also completely removed while everything was off.

 

After many short frustrating nights I finally had the twins out and could start mocking up the fitment and how everything around the turbo was going to run.

 

IMG_2410.thumb.JPG.e5e6aed40d43d8893dc7ffa296ebff66.JPG

IMG_2427.thumb.JPG.2513f67e0d3d46acfbf54fc91559e242.JPG

Immediately I thought shaping and welding sections of intercooler pipe would be the way to go with the plumbing for the turbo.

 

Weather kept packing in and progress was delayed so someone kindly let me in to a hangar to make up for the time lost.

 

IMG_2439.thumb.JPG.30b83dd0051679192a44f724c8b0234c.JPG

 

IMG_2435.thumb.JPG.017a36c76dc06ffc5f3ad3f311ed0a30.JPG

All the recirc and blow off valve parts were removed to rid the car of dead weight.

IMG_2436.thumb.JPG.f3172dc62f621116ff9ac8c18e526c35.JPG

Plenty of progress was made while I could work in here and also while removing the old recirc piping I found that it would be a perfect fit and bend for the turbo and would subsequently save me a heap of time instead of an intercooler pipe fabricated to do the same job.

IMG_2429.thumb.JPG.7d35a09db7ce8e65b2f54515e4e63cae.JPG

Knowing that the factory actuator could potentially cause problems with boost control it was swapped for a Turbosmart IWG75 twin port actuator.

IMG_2440.thumb.JPG.b05cf06221c1aadc5248d01d503030d8.JPG

Turbo was off and on more times than I could count to get everything torqued down and hose lengths and the p/s reservoir lines to fit up tidily.

 

IMG_2462.thumb.JPG.fa13ddc452fc8ef8653ec0e2c3d18ad5.JPG

After everything was fitted and tightened down I removed the plugs to crank the engine over and confirm the oil flow for the turbo feed. After a few cranks the new oil started coming out and could be attached to the turbo. 

 

IMG_2465.JPG.faa99fe4ab9b3d34a9cb1e01a19ef230.JPG

IMG_2466.thumb.JPG.8ef87f7673ad9afcbe1e0b97c075d2d8.JPG

As the blow off valves were also removed and a cap was made for the hose. It would holt 20+psi better than a WD40 cap!

IMG_2469.thumb.JPG.a2c325c618445ec863639d5baf2c9d2b.JPG

The downpipe posed to be one of the biggest problems as no one in my area would supply or create pre-bent 3.5" stainless tube. I had to purchase a 3.5" stainless donut from sinco to sort out the rest of the exhaust. This was an absolute nightmare to cut.

More and more small parts started to become apparent to me that I'd need to finish everything off and after a bucket load of invoices and receipts I finally had everything I needed. Most of my time was spend running back and forth from the shops to find the correct fittings, hoses etc. - rookie stuff.

 

IMG_2508.thumb.JPG.d29e6bb7784bc9e312102f43b78f551f.JPG

IMG_2511.thumb.JPG.4eeb16e9a3548771837b0c9578094669.JPG

Everything started to take shape at this stage and I was very happy on how simplified I made the engine bay. Boost control and blow off valve lines were sorted after this and the engine bay had a general refresh.

No leaks were discovered and the car has since been waiting for a dyno tune.

IMG_2518.thumb.JPG.170174b1b70e6fcb7f307cb1c650d327.JPG

                                                                                                                                                                                                                                                                                             

IMG_2380.JPG

Edited by Dievos
grammar, remove unwanted picture.
  • Like 6
Link to comment
https://www.sau.com.au/forums/topic/472431-r32-gtr-efr-7670-build/
Share on other sites

Nice write up mate thanks for sharing! 

This will be a cracking little setup! 

Something ive looked forward to seeing somebody do as this as an alternative to a -7 or -9 power range but will absolutely knock them out the park for response and driveability.

Proof that you dont just go single because you want a million hp GTR!

So the car will be on 98? 

How long till shes tuned? Looking forward to seeing how she goes ?

Cheers for the words mate, 300kW+ is plenty for me and making it quickly will only make me happier.

You're right - will be using 98 for the tune. Should be going on the dyno this Wednesday, excited to see what results I will get on a standard engine.

The 1.05 rear would of definately helped your cause on 98 with only a couple hundred rpm sacrifice  (that you probably wouldnt have noticed due to a lil more off boost torque filling the void) but obviously would have been a much more expensive exercise.

Im gunna take a punt and say this set up will be more responsive than the stock turbos and make more power everywhere and 100kw more than the stock turbos. 

Again using bro science i expect this thing to start getting rapid around the 3500 zone in early gears. 

Keep us posted and see how far off the money my predictions are haha! ?

thats mad. instant boost. but do yourself a favor and cut the "divider" part of the gasket out or find a mls single entry gasket. as all the t4 dual entry "gasket leaks" ive fixed are because of the divider.

the divider wall is the hottest part of the housing and "grows" more than the periphery, constantly lifts on the divider and eventually lifts enough to break the seal around the outside of the flange. the oxy cuts the gasket away leaving a nice section missing but the divider perfectly intact.. :)

Firstly, I'll say that the results were a bit inconclusive. We had real issues with the nuts on the actuator coming loose and being a general pain to adjust midway through testing. It was a rookie mistake from me in the first place to not set the preload accurately. We ended up double nutting the actuator to secure it in place, where it ended up being set was quite low and effected the spool by a fair margin. This is what we ended up with:

IMG_2550.thumb.JPG.77922ce1adb3e7d073d8453e2310b49c.JPG

From here I will adjust the preload on the turbo correctly but I'm expecting it to have a massive impact on the spool. What I found interesting was how things were out of breath around 6500rpm. Can anyone here say that standard cams would be the issue here - seems odd for that to happen so early. Valvetrain getting tired perhaps? 

 

This run was done on 21psi. The green trace is was the old setup with the LeMan turbos on 1.6bar and and red trace is the EFR.

Off the dyno the car feels awesome to drive and along with the baby T51R sound I rarely see myself going over 5000rpm because of the torque.

 

9 minutes ago, fatz said:

same turbo on a mates car ran 270rwkw and dies in the arse after 6k

 

so you on the money

he upgraded to the nxt size up and was much happier

But yet they go 380-400 quite comfortably on 4G's. ?.

Need to bin the IWG and Externally gate it. 

IWG versions of most EFR setups have proven to be a bit disappointing.

Don't forget this turbo has a rear end wheel bigger than a gt35, it will always be 'laggy' its a pretty big turbo, not being able to spin it up due to gate issues (or 98) will take the wind out of it.

It's still a bit early to say that it's a disappointing result.

This is what we have also mapped.

IMG_2539.JPG.a76ea363e5960fd323e81b7fa2586876.JPG

 

I'm still puzzled at what might be causing the drop off at 6500rpm, it doesn't look like an ignition problem judging by the trace and the boost still holds fine.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Also, I logged some data from the ECU for each session (mostly oil pressures and various temps, but also speed, revs etc, can't believe I forgot accelerator position). The Ecutek data loads nicely to datazap, I got good data from sessions 2, 3 and 4: https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-2?log=0&data=7 https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-3?log=0&data=6 https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-4?log=0&data=6 Each session is cut into 3 files but loaded together, you can change between them in the top left. As the test sessions are mostly about the car, not me, I basically start by checking the oil pressure (good, or at least consistent all day). These have an electrically controlled oil pump which targets 25psi(!) at low load and 50 at high. I'm running a much thicker oil than recommended by nissan (they said 0w20, I'm running 10w40) so its a little higher. The main thing is that it doesn't drop too far, eg in the long left hand fish hook, or under brakes so I know I'm not getting oil surge. Good start. Then Oil and Coolant temp, plus intercooler and intake temps, like this: Keeping in mind ambient was about 5o at session 2, I'd say the oil temp is good. The coolant temp as OK but a big worry for hot days (it was getting to 110 back in Feb when it was 35o) so I need to keep addressing that. The water to air intercooler is working totally backwards where we get 5o air in the intake, squish/warm it in the turbos (unknown temp) then run it through the intercoolers which are say 65o max in this case, then the result is 20o air into the engine......the day was too atypical to draw a conclusion on that I think, in the united states of freedom they do a lot of upsizing the intercooler and heat exchanger cores to get those temps down but they were OK this time. The other interesting (but not concerning) part for me was the turbo speed vs boost graph: I circled an example from the main straight. With the tune boost peaks at around 18psi but it deliberately drops to about 14psi at redline because the turbos are tiny - they choke at high revs and just create more heat than power if you run them hard all the way. But you can also see the turbo speed at the same time; it raises from about 180,000rpm to 210,000rpm which the boost falls....imagine the turbine speed if they held 18psi to redline. The wastegates are electrically controlled so there is a heap of logic about boost target, actual boost, delta etc etc but it all seems to work well
    • hahah when youtube subscribers are faster than my updates here. Yes some vid from the day is up, here:  Note that as with all track day videos it is boring watching after the bloopers at the start.  The off was a genuine surprise to me, I've literally done a thousand laps around the place and I've never had instability there; basically it rolled into oversteer, slipped, gripped and spat me out. On the way off I mowed down one of the instructor's cones and it sat there all day looking at me with accusing cone eyes as I drove past. 1:13:20 was my fastest lap, and it was in the second session, 3rd lap.  It (or me!) got slower throughout the day as it got hotter.      
    • It sounds like you want what the Toyota Landcruisers have for their roof racks. Wanna know what you end up with? Rust holes in the roof, and water everywhere...
    • Discovered today that if I select reverse first and take my foot off the brake, then select drive, the drive indicator light works and so does the tiptronic gear indicator. 
    • Ok so after much research and talking with knowledgeable people I've got my turbo conversion done and it's all running great other than 1 small issue.  Car has remained auto with the na auto and tcm, I've used a stagea ecu with. NIstune board and everything is great other than my gear selection on the dash. It illuminates park, reverse, neutral, 3rd and 2nd. But nothing drive or what gear your in when you pop it into tiptronic.  I'm sure there is maybe 1 wire in the ecu plug I need to move to rectify this. Does anyone here have any ideas?   Cheers guys
×
×
  • Create New...