Jump to content
SAU Community

Recommended Posts

Yep! I have never witnessed a company put some much effort into their product and their customers for such a low price.

Because he likes playing with turbos and cars not fisting people for money

  • Like 1

First of all thank every one for their support. I will keep on trying producing even better performing turbochargers while keeping them affordable.

I'm currently working with an engineers on the CNC program for the compressor and bearing housing machining based on a TD06 compressor housing and bearing housing castings. Once the machine operates it will be able to knock close to $100 off the cost and it will be passed onto our customers.

Some updates. This is in relation to the OP6 and 21U ball bearing high flows. For people whom prefer BB centers.

front.jpg

Its been in my car for a while been through a number of high boost dyno runs and I'm pretty confident that this version will last and work fine. How ever I'm unable able to clock alot of KMs on my test cars.

I currently have two of those CHRAs built, I will do them at the same cost as the standard high flow. Please PM or call if any one is interested to evaluate, preferably some one use it in a daily that can clock a lot of KMs. In case of failure I rebuild them to standard bush high flow.

Currently working on a new prototype of T28 very specifically for S14 and S15 VTC SR20det motors, Will update date details once made working.

Best to upgrade induction and exhaust first then play with the EBC as the end result will vary.

I'm posting up an promotion on our new ATR43SS-2 internally gated bolton turbochargers so more people can enjoy our latest development. The Retail price on this item is currently $1450, you can have own them now for $999 including braided oil feeding line. The Special offer is for 20 units only. That is currently the best performing RB25det bolton turbocharger.

comp.JPG

Product details and Dyno results are:

http://www.hypergearturbos.com/index.php?route=product/product&path=72&product_id=81

Great pricing Stao, very tempted. I'm currently using one of your 3 years old G3 high flow making 285rwkws on pump, can more power can be made with SS2?

Took my 180sx to wsid with sr20det with the ss1.5 and .86ar currently at 266rwkw

Ran a best of 12.3@122mph with a shit 2.1 60ft

Beat my last pb of 12.4@120mph with the atr28g2

Going to test it again after I put in a 3inch intake and walbro 450lph pump and a touch up tune

Hopefully will get closer to the 11s and I will also try it with the et streets as I only ran street semis

But had the et streets on when I ran the 12.4 with the atr28g2

  • Like 1

Hy_rpm: That is some excellent results. :thumbsup:

GeorgesR34: Overall the new SS2 do have a larger turbine and a more efficient compressor. How ever used as a bolton turbo with factory manifold internally gated, I don't think it will make a lot more power then what you currently have. Its a combination of what every thing can flow judging the characteristic of the turbocharger it self.

I'm trying to work out Total air flow for individual turbocharger on complete setups based on HP at moment, im getting some unrealistic figure and its kicking my head in.

I would like to come up graphs that contain specific air flow Vs RPM of the engine used for evaluation based on different HP levels. That way, we can see how much air each engine package is moving at given power level using different combination of turbochargers. Prediction of HP that way would be much more accurate. It would also allow every one to see the affects of each and every aftermarket parts installed in terms of total volume of air shifted. On the end, with all data organized, we can calculate the final outcome based on the turbocharger used in combination with aftermarket parts used.

We can also calculate based on the amount of fuel injected in combination of AFR to figure out how much air was burnt also. That would give an pretty accurate determination on the percentage differences of dyno outputs.

What I have is the details of engine (RB25det or SR20det), HP, AFR, Boost levels, injector sizes, RPMs. From the Adaptronic ECU files, I also have the injector VE used.

If any one had some experiences in working outs, please share some lights.

Airflow measurement could be taken with a mass air sensor placed either before the turbo or after the intercooler .

Inlet and exhaust manifold pressure measurement at least compares what's going on across the engine and should show up gate performance .

Turbo speed sensors tell you exactly where and under what conditions a turbo spins/spools up .

Turbo tacho may be expensive but the rest not too bad .

Cheers A .

Airflow measurement could be taken with a mass air sensor placed either before the turbo or after the intercooler .

Inlet and exhaust manifold pressure measurement at least compares what's going on across the engine and should show up gate performance .

Turbo speed sensors tell you exactly where and under what conditions a turbo spins/spools up .

Turbo tacho may be expensive but the rest not too bad .

Cheers A .

Thanks for the advise. How ever installing sensors can only determine the amount of air flow based on my particular engine package. I'm more interested on formulas calculate air flow from on every one elses engine packages using data that is available on the dyno sheet and ECU files.

I believe the best way of doing it is by calculating based on the amount of fuel burnt at given RPM and give AFR. I'm currently using the fuel injection formula calculating mass of air required to burn given amount of fuel required at certain AFR at given engine cycle. It didn't work out well unless I'm making errors. Have you or any one tried this method?

Plastty: Yes, I can high flow them to any of the ATR28 profiles, bigger they are the laggier they be comes. Alternatively use an high mounted SS2, probably work out at similar cost and way better performance.

Plastty: Yes, I can high flow them to any of the ATR28 profiles, bigger they are the laggier they be comes. Alternatively use an high mounted SS2, probably work out at similar cost and way better performance.

its not for a gtr but custom application.

There you go. High mount ss2 on the micra!

LoL worked extremely well on my steam pipe low mounted KIA SUV with 50mm external.

its not for a gtr but custom application.

in this case yes, I can high flow them for $800 each.

in this case yes, I can high flow them for $800 each.

im only using one.... ill see how the stock one goes with e85 at 13psi and may be in touch....

Few more updates. This might be relevant as it is the current version of ATR43SS1PU model for RB25det. Moved on to SR20det. and the final result was maxing out at 275rwkws. It was using Caltax P98 fuel.

It have resulted identical numbers to what the same turbocharger was performing on my RB25det test, except the same turbocharger maxed out at much lower boost pressure with much better boost response.

Result:
power.jpg



boost.jpg


The AFR curve
afr.jpg

Tuning data:
timingmap.jpg


Fuel table
fuelmap.jpg




Customer's result from JZX100 Chaser. 1JZGTE VVTI Auto. Our standard profile high flow of factory CT15B turbocharger, with fuel and ecu mods.

272rwkws @ 19psi Pump 98 fuel

275rwkwauto.jpg

boost.JPG

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Any update on this one? did you manage to get it fixed?    i'm having the same issue with my r34 and i believe its to do with the smart entry (keyless) control module but cant be sure without forking out to get a replacement  
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • perhaps i should have mentioned, I plugged the unit in before i handed over to the electronics repair shop to see what damaged had been caused and the unit worked (ac controls, rear demister etc) bar the lights behind the lcd. i would assume that the diode was only to control lighting and didnt harm anything else i got the unit back from the electronics repair shop and all is well (to a point). The lights are back on and ac controls are working. im still paranoid as i beleive the repairer just put in any zener diode he could find and admitted asking chatgpt if its compatible   i do however have another issue... sometimes when i turn the ignition on, the climate control unit now goes through a diagnostics procedure which normally occurs when you disconnect and reconnect but this may be due to the below   to top everything off, and feel free to shoot me as im just about to do it myself anyway, while i was checking the newly repaired board by plugging in the climate control unit bare without the housing, i believe i may have shorted it on the headunit surround. Climate control unit still works but now the keyless entry doesnt work along with the dome light not turning on when you open the door. to add to this tricky situation, when you start the car and remove the key ( i have a turbo timer so car remains on) the keyless entry works. the dome light also works when you switch to the on position. fuses were checked and all ok ive deduced that the short somehow has messed with the smart entry control module as that is what controls the keyless entry and dome light on door opening   you guys wouldnt happen to have any experience with that topic lmao... im only laughing as its all i can do right now my self diagnosed adhd always gets me in a situation as i have no patience and want to get everything done in shortest amount of time as possible often ignoring crucial steps such as disconnecting battery when stuffing around with electronics or even placing a simple rag over the metallic headunit surround when placing a live pcb board on top of it   FML
    • Bit of a pity we don't have good images of the back/front of the PCB ~ that said, I found a YT vid of a teardown to replace dicky clock switches, and got enough of a glimpse to realize this PCB is the front-end to a connected to what I'll call PCBA, and as such this is all digital on this PCB..ergo, battery voltage probably doesn't make an appearance here ; that is, I'd expect them to do something on PCBA wrt power conditioning for the adjustment/display/switch PCB.... ....given what's transpired..ie; some permutation of 12vdc on a 5vdc with or without correct polarity...would explain why the zener said "no" and exploded. The transistor Q5 (M33) is likely to be a digital switching transistor...that is, package has builtin bias resistors to ensure it saturates as soon as base threshold voltage is reached (minimal rise/fall time)....and wrt the question 'what else could've fried?' ....well, I know there's an MCU on this board (display, I/O at a guess), and you hope they isolated it from this scenario...I got my crayons out, it looks a bit like this...   ...not a lot to see, or rather, everything you'd like to see disappears down a via to the other side...base drive for the transistor comes from somewhere else, what this transistor is switching is somewhere else...but the zener circuit is exclusive to all this ~ it's providing a set voltage (current limited by the 1K3 resistor R19)...and disappears somewhere else down the via I marked V out ; if the errant voltage 'jumped' the diode in the millisecond before it exploded, whatever that V out via feeds may have seen a spike... ....I'll just imagine that Q5 was switched off at the time, thus no damage should've been done....but whatever that zener feeds has to be checked... HTH
×
×
  • Create New...