Jump to content
SAU Community

Recommended Posts

A new line of turbo. They unveiled the flow and turbine map for these and they seems bloody good.
Very high compressor efficiency on a very broad range of flow and pressure and new turbine wheel apparently. It seems to be based off the gt28 wheel because the diameter are really close but this new turbine flows a shit ton more.
All in all they seems extremely potent turbo for their inertia.
Avalaible in 3 A/R in vband form and 1 in t25.
Twin guy should look into these.

  • Like 1
Wait to see what real world results look like.

Could be good, though the new turbine material isn't much less dense than the existing type, and not like the ERFs



Yeh... every time Garrett bring something new you the table, I little voice in my head says "it still looks nothing like an FP or EFR" haha

First time Garrett has released something which has given me a flicker of excitement in a long time, at least based on the information they've given so far and the clear effort that they've put in.  Those maps look awesome, the work they've done on packaging and reliability is very promising, and the flow for the wheel sizes basically is insane.  

Mar-M doesn't seem any lighter for size than the EFR range but at a quick quick glance at the flow maps etc, if you were considering a turbo upgrade and EFR and Garrett turbos are options - you have all the data for these so you can actually compare.  The G25 fits between an EFR7064 and an EFR7670, so I'll pick a point which is in between (really RB25s would like a turbo between those two sizes) so I'm going to compare a .92 EFR7670 and a .92 G25-660.

With a mega-rushed attempt at working how well matched they'd be at 6500rpm on 20psi on a stock RB25 (I'm using ~51lb/min as a target)

.92 TS EFR7670:

Compressor inducer: 57mm
Compressor exducer: 76mm
Compressor efficiency: 67%

Turbine wheel OD: 70mm
Turbine inlet pressure: 3psi above boost pressure
Turbine speed: 103,000rpm (74% of max)

.92 open scroll G25-660

Compressor inducer: 54mm
Compressor exducer: 67mm
Compressor efficiency: 67%

Turbine wheel OD: 54mm
Turbine inlet pressure: 3psi above boost pressure
Turbine speed: 137,000rpm (83% of max)

 

So, the G25 is working slightly harder than the EFR to achieve what it's doing - however doesn't have a fragile Ti-AL turbine wheel to deal with, has a much smaller compressor and more importantly a WAY smaller turbine wheel... like way way smaller.   It doesn't have the fancy light Ti-AL material the EFRs have, but moment-of-inertia has a huge amount to do with how much of the mass is how far from the rotational centre.   I don't know how the materials compare weight wise but this turbo has a significantly smaller turbine wheel than ANYTHING in the EFR range, if they ended up weighing the same as the comparatively giant EFR7670 turbine wheel then they'd still have a much lower moment-of-inertia... which is where your response comes from.

Going by the turbine flow map this doesn't mean you are going to choke your engine, in fact - at the hypothetical 20psi & 51lb/min point that I picked, the turbine flow is very comparable with the .92a/r EFR7670.

The trick is there is much more to it than just the wheel sizes, it depends on how they've managed to get such huge flow from such small turbine and compressor wheels - they could be coming at some other cost but I am VERY interested to see the real world performance of these things.  I wouldn't count out the possibility of these being something that put the BW EFR range on notice performance wise, but with better reliability than the previous Garretts - let alone having to worry about turbine overspeeding as a thing.

 

 

  • Like 12
11 hours ago, Lithium said:

 but moment-of-inertia has a huge amount to do with how much of the mass is how far from the rotational centre.   I don't know how the materials compare weight wise but this turbo has a significantly smaller turbine wheel than ANYTHING in the EFR range, if they ended up weighing the same as the comparatively giant EFR7670 turbine wheel then they'd still have a much lower moment-of-inertia... which is where your response comes from.

:thumbsup:

Inertia = mass x radius^2 

Because the radius is squared, even if the larger wheel is lighter, it only takes a small increase in size (radius) for the larger turbine to have a higher moment of inertia.

cheers

Mike

11 hours ago, Mick_o said:

Interesting attack plan by Garrett.... lets make em smaller! 

Pretty keen on some results! 

I know the engineers will have done their homework to achieve flow efficiency, but the size of the holes in the housings are a factor in how much air can realistically pass into/out of the engine.

Lithium's calculations suggest a speed increase of ~30% to achieve the same flow.

Makes me wonder about longer term durability for severe duty use, and whether they have done due diligence for the bearing arrangement.  Turned out not to be the case with the early GT series with plastic bearing cages.

But yes, it's sure going to be interesting to see how these things perform!

40 minutes ago, Dale FZ1 said:

I know the engineers will have done their homework to achieve flow efficiency, but the size of the holes in the housings are a factor in how much air can realistically pass into/out of the engine.

Lithium's calculations suggest a speed increase of ~30% to achieve the same flow.

Makes me wonder about longer term durability for severe duty use, and whether they have done due diligence for the bearing arrangement.  Turned out not to be the case with the early GT series with plastic bearing cages.

But yes, it's sure going to be interesting to see how these things perform!

The compressor and turbine maps will be taking those into account, given that they have different turbine flow maps for the different housings.   The max wheel speeds are no greater than the old plastic bearing cage -5s which have been running around for ages, and they have definitely done development on toughening up the core construction on these - though even the GTX series (for interest, the Gen1 GTX2860R's max rpm is 185,000!!!) all had steel bearing cages etc.  I doubt there will be an issue there, the rpm sound crazy but it's not unusual for smaller OD compressors to go even faster.

I am really interested to see the real world performance, however.  I'm not going to count any eggs before they are hatched - but if my arm was twisted behind my back and I were forced to say they're going to be good or not... I'd say they're looking pretty promising.  

  • Like 1



[emoji848][emoji848]not bad at all...
I would be willing to be the guinea pig and give it a go if i hadn't spent a heap on this new hta3076 twin scroll sitting here [emoji57]

I think wait and see what other examples Garrett comes out with .

For us same old as when the T3 IW GT3076Rs came out . NEED A T3 mount flange and that integral waste gate to make it a bolt on proposition .

Like Mr Lith  said need something that's about in between the capacities/capabilities of EFRs 7064 and 7670 .

I thought I smelt a rat when the GT3584RS came out because mobs like Garrett have to spend big to develop new turbines so I reckon there's a few more sizes to come .

Hopefully soon RIP the old GT28 NS111  GT30 and GT35 turbine families . Gut feeling new designs with less hub mass fewer blades with wide tips and big trims . 

Edited by discopotato03

Its because Garrett have really not had any drastic changes since the GT series of turbos were released a long time ago (~15 years?) and this is looking promising. If you know nothing about turbos think of it as hopefully now you are able to run a smaller turbo (helping response) and make the same power. 

  • Like 3

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Good luck on the weekend mate
    • Must have been an absolute nightmare to drive when the power steer was out, the rack ratio/wheel size/caster is all set up for power assistance
    • Welcome to SAU, what are you looking at buying?
    • I checked the injectors again (1 and 2, since they’re easiest to access) to make sure they weren’t clogged. Even though the entire fuel system had been cleaned, I wanted to be certain. Everything looked clean, so I reinstalled and connected everything. When I started the car to confirm everything was okay, it immediately revved up high, so I shut it off straight away. I checked to see if I’d missed a vacuum hose or something, but everything was connected. On the second attempt, the car ran without the high idle, but I noticed a distinct “compressed air” sound coming from the engine bay. Tracing the sound, I pushed injector #6 forward slightly and the noise stopped — it turned out it wasn’t seated properly, despite the fuel rail being bolted down. While holding it in place, the car idled steadily without stalling and ran for over 5 minutes. At this point, I pulled all six injectors out just in case I hadn’t seated them correctly or dirt had gotten onto the O-rings. Unfortunately, I discovered that I had damaged 3 out of 6 injectors (the OEM 270cc ones) during installation. So yes, this was my fault. Since only the pintle caps were damaged, I’ve ordered a Fuel Injector Service Kit from NZEFI to refurbish them. In the meantime, I reinstalled my new injectors – the car now idles fine for over 15 minutes without stalling. I have not attempted to drive it so far. It’s not perfect yet, as it hesitates when the throttle is pressed, but it’s a big improvement. Unplugging the IACV with the new injectors idles at around 800rpm, even with the IACV screw tightened fully. But this is probably due to tune.
    • I wanted to try and preserve the front bumper as long as possible, they're not cheap and are made to order in Japan. Taking inspiration from my previous K11 Micra build where I made an undertray for the Impul bumper, I did the same for this BN Sports bumper but a little slimmed down.  This time round I only made a 'skid plate' (if that's the correct wording/term) for just the bumper surface area, the Micra version covered the gap like an undertray. Starting off with a sheet of mild steel approx. 0.9mm thick 4ft x 2ft in size. I traced around the bumper, cut it out and cleaned the edges. Luckily I was able to get two halves from one piece of metal In the video I installed it as is, but I've since then I've removed it to spray and add a rubber edging trim. The rubber trim is suitable for 1-2mm and it's a really nice tight fit. The bolts had to be loosened due to the plates being too tight against the bumper, the trim wouldn't push on I used some stainless M6 flat headed bolts for a flusher finish (rather than hex heads poking down), I believe this style fastener is used for furniture too incase you struggle to source some. The corner's are a little wider, but this may be an advantage incase I get close to bumping it  The front grill got some attention, finally getting round to repairing it. Upon removal one fixing pulled itself out of the plastic frame, one side is M8 that fixes inside of the frame, where as the other side is M5. Not knowing I could get replacements, I cut down an M8 bolt, threaded it inside the frame along with a decent amount of JB Weld.  The mesh was replaced to match the bumper. One hole on the bonnet/hood had to be drilled out to 8mm to accommodate the new stud, once the glue had set it could be refitted. I think the reason the grill was double meshed was to hide the horn/bonnet latch (which makes sense) but I much prefer it matching the bumper Bumper refitted and it's looking much better IMO The Youtube video can be seen here: https://www.youtube.com/watch?v=bVZP35io9MA
×
×
  • Create New...