Jump to content
SAU Community

Recommended Posts

I'll try to minimise on the ramble as much as possible.

I've notice these days on the markets there are a few options for twin scroll turbos for the humble RBs, but what I've notice is that the manifold choices available which sometimes confuses me on what the best possible setup is.

1. Manifolds that group Cylinders 123 and 456 together and have 1x external wastegate mount (not true twin scroll manifold as the exhaust pressure clashes at the collector -> gate mount)

RB+Manifold+Single+wastegate+Twin+scroll.jpg

2. Manifolds that group Cylinders 123 and 456 together and have 2x external wastegate mount (true twin scroll manifold, separate gas flow for grouped cylinders, mimising exhaust back pressure )

R14turbomanifold.jpg

3. Manifolds that group Cylinders 123 and 456 and have no gate mount, makes use of the turbo's waste gate

Imagine the previous with external waste gates blocked off & a turbo like the below from a WRX:

atp_wrx_sti_gt_upgrade_ex.jpg

Point 1, the purpose of a twin scroll manifold is to purely group the exhaust gases so that there is less exhaust back pressure & chances of other post fired cylinders sucking back the exhaust gases. If the collector merges the 2x groups, is there really a point in that manifold might as well just have a 6 to 1 collector instead of a split collector

Point 2: Ideally the right setup, but the most expensive and the most complicated (usually A/C lines are removed etc.)

Point 3: The V Band clamp on the housing would eliminate the need to run 2x gates and make the manifold more simple, I've seen weldies here but not the off the shelf kit as so.

Now, I like the ideal of Point 3, but I have yet to see an off the shelf turbo with such housing with a V Band clamp on it, I have see people weld them on, but that's another cost to add. i prefer off the shelf kits because of cost and aesthetics. With Point 3 what are the Cons to it? At the moment I only see Pros to it because:

  1. No need cut and shut turbo exhause housing
  2. True twin scroll, exhaust gases from cylinder 123 and 456 ever only meet in the exhaust housing
  3. Looks more "stock" (I'm ready to cop ccriticism on this)
  4. Minimises pipe work, ultimately leads to a nicer setup.

Ideally, what setup would yield the best response and torque?

Well, maybe you're a little off base. It's not about "back pressure". Grouping the pulses together is literally about grouping the pulses together. There is an even spread of 3 pulses in each group, separated by the same numbers of degrees of rotation. This gives a slightly better response by nozzling each group separately onto the turbine.

These pulses are not just static pressure. They are also a burst of gas travelling at rather high speed. There is a lot of velocity pressure involved. So realistically, for any given twin scroll manifold that had just the one wastegate offtake, as long as the wastegate offtake from each half of the manifold was not directly connected to each other (ie ideally if there were separate short pipes from each half that merged together where the wastegate mounts) then the pulses are still going to travel direct to the turbine as required.

And that is exactly what your top photo shows, and that is perfectly fine with me.

You have to remember that there are two operating modes here. 1) The engine is not on boost yet. The wastegate(s) is(are) closed. All the flow is twoards the turbine. The pulses will travel past the wastegate offtakes. Maybe there'll be some leakage of each pulse via the wastegate connection to the other group of three, but it won't be heaps. 2) The engine is on boost. When on boost the exhaust manifold pressure is pretty high and some of the gas is always making the turn to flow towards the wastegate. The exhaust pulses now have a lot more velocity energy and will still travel towards the turbine, and a portion of gas will flow to the wastegate. That flow towards the wastegate will have its own velocity pressure, and as the direction of that flow is towards the wastegate itself, there will be only a small amount of "leakage" back towards the other group of 3 from each pulse.

I simply wouldn't worry about it. I'm sure that a true double wastegate design is the best overall, but the margin is probably reasonably small.

Weld wastegate pipe onto turbine housing and have no gate pipe off the manifold. Better response, more power, end story

That was what I was thinking, as per Point 3. That 3076 for a WRX has a V Band clamp on the exhaust housing for an external gate. Nice and clean setup, no need to cut and shut a $2k turbo. In saying that, I have yet to see one adapted to a RB.

My last two turbo setups had the gate off the turbine housing, you can make it look great if you have a good fab/welder guy.

heya NYTSKY, sorry I meant to say off the shelf turbo for a RB motor with a V Band clamp as below. I have seen a several setups where wastegates mounts are welded to the turbine housing. I have yet to see anything below used on a RB motor.

ATP-SUB-008-3.jpg

I have my own thoughts on how to mount a wastegate. Will be poutting it to test soon and hopefully will work waaay much better then the current 6boost-Turbosmart arrangment

Lets see a MSPaing Jig! Share share!

That housing is used on a specific motor/turbo arrangement. I highly doubt one would be made just for an aftermarket RB application.

Especially when one can be fabricated so easily.

Im having two 38mm gates on my next manifold, single entry Vband. Was going to be T4 divided but couldnt get a housing to suit my turbo in time.

Anyone put two gates on a single entry manifold before?

I have an ATP 0.82 T3 TS but they also make T4 flanged versions with V-band outlets as stated above.

I bought the turbo through streettotrack but procharge can also supply the housings if you are looking for an alternate.

So how would you go about welding a wastegate onto a twin scrolled turbocharger like the borg warner s366. Would you then weld something like 2 x 38mm tial gates on each side of the divided housing?

I would like to see pictures of these setups. We dont see much of these setups here in the states.

I'll have pics up soon of a twin scroll manifold with twin 38 mm gates plumbed into a 4 inch exhaust.. Running a BWs300sx 83/75 on a 26

Its will look awesome but is a real head ache to make happen

Edited by GTR_JOEY

Weld wastegate pipe onto turbine housing and have no gate pipe off the manifold. Better response, more power, end story

I respectfully disagree, my first kit was from ETM and had the Tial 44mm mounted from the housing (GT3582R) The thing never controlled boost past 4500rpm. Fail

I am quite happy with my custom steam pipe manifold running a single 60mm gate with a Precision Billet 6262 and it holds 1.3 bar solid all day every day :thanks:

Edited by Weapon

I respectfully disagree, my first kit was from ETM and had the Tial 44mm mounted from the housing (GT3582R) The thing never controlled boost past 4500rpm. Fail

I am quite happy with my custom steam pipe manifold running a single 60mm gate with a Precision Billet 6262 and it holds 1.3 bar solid all day every day :thanks:

Not sure why. We have them control boost perfectly on everything from GT3076's running 1 or even 2 bar up to GT4508's running 3.5 bar. All on 2.5 and 3L 6 cyl engines

It's good that you got your setup working properly but I don't know that the fact the gate pipe was welded off the housing was the cause.

  • 5 months later...

Thought I would boot this thread in the backside with a link to a photo of someones good work: http://www.eagletalon.net/pictures/index.php/2006/Red-Car/wastegate/IMG_1002

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • perhaps i should have mentioned, I plugged the unit in before i handed over to the electronics repair shop to see what damaged had been caused and the unit worked (ac controls, rear demister etc) bar the lights behind the lcd. i would assume that the diode was only to control lighting and didnt harm anything else i got the unit back from the electronics repair shop and all is well (to a point). The lights are back on and ac controls are working. im still paranoid as i beleive the repairer just put in any zener diode he could find and admitted asking chatgpt if its compatible   i do however have another issue... sometimes when i turn the ignition on, the climate control unit now goes through a diagnostics procedure which normally occurs when you disconnect and reconnect but this may be due to the below   to top everything off, and feel free to shoot me as im just about to do it myself anyway, while i was checking the newly repaired board by plugging in the climate control unit bare without the housing, i believe i may have shorted it on the headunit surround. Climate control unit still works but now the keyless entry doesnt work along with the dome light not turning on when you open the door. to add to this tricky situation, when you start the car and remove the key ( i have a turbo timer so car remains on) the keyless entry works. the dome light also works when you switch to the on position. fuses were checked and all ok ive deduced that the short somehow has messed with the smart entry control module as that is what controls the keyless entry and dome light on door opening   you guys wouldnt happen to have any experience with that topic lmao... im only laughing as its all i can do right now my self diagnosed adhd always gets me in a situation as i have no patience and want to get everything done in shortest amount of time as possible often ignoring crucial steps such as disconnecting battery when stuffing around with electronics or even placing a simple rag over the metallic headunit surround when placing a live pcb board on top of it   FML
    • Bit of a pity we don't have good images of the back/front of the PCB ~ that said, I found a YT vid of a teardown to replace dicky clock switches, and got enough of a glimpse to realize this PCB is the front-end to a connected to what I'll call PCBA, and as such this is all digital on this PCB..ergo, battery voltage probably doesn't make an appearance here ; that is, I'd expect them to do something on PCBA wrt power conditioning for the adjustment/display/switch PCB.... ....given what's transpired..ie; some permutation of 12vdc on a 5vdc with or without correct polarity...would explain why the zener said "no" and exploded. The transistor Q5 (M33) is likely to be a digital switching transistor...that is, package has builtin bias resistors to ensure it saturates as soon as base threshold voltage is reached (minimal rise/fall time)....and wrt the question 'what else could've fried?' ....well, I know there's an MCU on this board (display, I/O at a guess), and you hope they isolated it from this scenario...I got my crayons out, it looks a bit like this...   ...not a lot to see, or rather, everything you'd like to see disappears down a via to the other side...base drive for the transistor comes from somewhere else, what this transistor is switching is somewhere else...but the zener circuit is exclusive to all this ~ it's providing a set voltage (current limited by the 1K3 resistor R19)...and disappears somewhere else down the via I marked V out ; if the errant voltage 'jumped' the diode in the millisecond before it exploded, whatever that V out via feeds may have seen a spike... ....I'll just imagine that Q5 was switched off at the time, thus no damage should've been done....but whatever that zener feeds has to be checked... HTH
×
×
  • Create New...